常微分方程6 variational calculus

常微分方程6 variational calculus

ID:34487966

大小:588.83 KB

页数:36页

时间:2019-03-06

常微分方程6 variational calculus_第1页
常微分方程6 variational calculus_第2页
常微分方程6 variational calculus_第3页
常微分方程6 variational calculus_第4页
常微分方程6 variational calculus_第5页
资源描述:

《常微分方程6 variational calculus》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Chapter6VARIATIONALCALCULUS1.NecessaryConditionofExtremumforFunctionalsofIntegralType1.1GENERALITIESInvariouscases,themathematicalmodelsassociatedtomechanicalphenomenaarepresentedinintegralform.Thisformnaturallyappearse.g.whenwearesearchingforaminimumenergy.Iftheenergydependsonlyononeph

2、ysicalmagnitude,correspondingtoafunctiony()x,aswellasonitsderivativey′(x),thenonecanenouncethefollowing2Minimumproblem.Findthefunctiony∈C([x1,x2])forwhichtheintegralx2I[]y≡∫F()x,y()()x,y′xdx(6.1.1)x1hasamimimalvalue.Ifthemechanicalprobleminvolvesotherrestrictionsony,thentheminimumofI[]y

3、mustbesearchedforinthesetoftheadmissiblefunctions,i.e.,ofthefunctionssatisfyingtheserestrictions.2WeadmitthattheintegrandofI[y]–thefunctionF–isofclassCwithrespecttoitsargumentsx,y,y′;theendsx1,x2oftheintervalofintegrationaresupposedlyfixedup.1Obviously,theintegralIhasawell-determinedval

4、ueforeachy∈C([x1,x2]).Itthusassociatestoanysuchfunctionarealnumber.1WesaytheIisarealfunctional.WecanalsosaythatIisdefinedonC([x1,x2]).1Inwhatfollows,weshalldenotebyF⊆C([x1,x2])thedomainofdefinitionofIandbyU⊂Fthesetoftheadmissiblefunctionsthatsatisfythesupplementaryconditionsimposedbythe

5、consideredmechanicalproblem.0Denotebyf=supf()xthenorminC([x1,x2])andbyf1=max{f,f′}thex∈[]x1,x21norminC()[]x1,x2.Letnowy∈F.WecallV0={Y∈F,Y−y≤ε}aneighbourhoodoforder0ofy.ThesetV={Y∈F,Y−y≤ε}isaneighbourhoodoforder1ofy.Obviously,a11neighbourhoodoforder0isricherthanoneoforder1.WesaythatI:F→ℜ

6、allowsanabsolutemaximumaty∈Uif415416ODEsWITHAPPLICATIONSTOMECHANICSI[]Y≤I[y]foranyY∈U;(6.1.2)Similarly,wesaythatI:F→ℜallowsanabsoluteminimumaty∈UifI[]Y≥I[y]foranyY∈U.(6.1.3)Themaximaandminimaarealsocalledextrema.Relaxingtheaboveconditions,weobtainthedefinitionsoftherelativelystrong/weak

7、extrema.WesaythatI:F→ℜallowsarelativelystrongmaximumaty∈UifthereexistsaneighbourhoodV0oforder0ofysuchthatI[][]Y≤IyforanyY∈V0∩U(6.1.4)andallowsarelativelyweakmaximumaty∈UifthereexistsaneighbourhoodV1oforder1ofysuchthatI[][]Y≤IyforanyY∈V1∩U.(6.1.5)Therelativelystrong/weakminimaar

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。