资源描述:
《高等代数ⅰ期中试卷07-08(1-1)答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课程《高等代数》任课教师李清桂2007-2008学年第1学期说明:1.请填写课程名称和任课教师姓名,考试时间;2.请在该试卷上集中出题,标清题号,学生答题纸将统一另备。一、填空:(每小题3分,共15分)12(200712007−)1.n阶行列式=_____.答案:=−()122007!=−2007!$2007304022222.设行列式D=,则第四行各元素余子式之和的值为_____________.0700−5322−30403403402222答案:MMMMAAAA+++=−+−+==7222744228==−414243444142
2、43440700−−−111001−−1111*1−3.设A,B均为阶矩阵,nAB==25,−,则2AB=.21n−*1−−nn112答案:22AB==2−−55⎛101⎞⎜⎟nn−14.设A=⎜020⎟,而n≥2为整数,则A−2A=_____________.⎜⎟⎝101⎠⎛⎞101101⎛⎞⎛⎞202⎛⎞101答案:A2==⎜⎟020020⎜⎟⎜⎟04020202=⎜⎟=A,⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠101101⎜⎟⎝⎠⎜⎟⎝⎠201⎜⎟⎝⎠1013222nnnn−−12−1nn−1法1:A====AA222AAA⋅=22AA,"AA
3、=2,2,AA=⇒A−2A=0n−2nn−1法2:两边同时乘以A,得AA=21⎧kx+−=y20z⎪5.齐次方程组⎨xkyz++=20有非零解,则k的取值为_____________.⎪⎩kx++=ykz0答案:若齐次线性方程组有非零解,则D=0,kk12−−1222或k=−1Dk==1210−+kk22=()2+k()k−1=02⇒kk=−,=1,kk1002+k二、单项选择:(每小题3分,共15分)111−−x1111−+−x144441.行列式=().(A)x;(B)−x;(C)x−1;(D)x+111x−−11x+−1111−答
4、案:将各列加到第1列111−−xx1−−−−11x1111x1100x1111−+−xx−+−11111111x−+−x00x4===xxx=,选A1111xx−−−−−−x111111110xx0xx+−111−1−11−1111−−11000x1222.−1x3的x的系数是().(A)1;(B)−1;(C)2;(D)−4.2x−12τ(132)2222答案:含x的项有2项:aaa+−()13aaa=−−xx=−4x,x的系数是-4,选D1122331123323.下面说法正确的是().222(A)AC=AB⇒C=B;(B)()A+B
5、AA=++2BB;222(C)()A−=−+BAA2BB;(D)AB=0⇒A=0或B=0.答案:AB=⇒=⇒0AB0AB=00或=,选DA)是消去律不成立,B),C)都是交换律不成立∗4.设阶矩阵nA非奇异()n≥2,A是矩阵A的伴随矩阵,则()∗∗∗∗nn−+11∗∗∗n−2∗n+2()AAAABAAACAAADAA()==,()(),()()=,()()=A∗∗∗∗∗∗∗∗∗−1nn−−12A答案:AAA=⇒=⇒=I,AAAI(),()AAA()==AAA,选CA2−1−1−1−1−15设A,B,A+B,A+B均为n阶可逆矩阵,则(
6、A+B)=().−1−1−1−1(A)A+B;(B)A+B;(C)(A+B);(D)A(A+B)B.答案:一般和的逆不等于逆的和,答案A,B直接排除,现在验证答案D的正确性:选D−1−1−−11−1−1−1−1法1:()A+=+B(BB()AA)(要满足反序逆规则,须右提A,左提B,再填中间(BA+))−−11−1−1−1=+()AB()AB()(矩阵的逆:反序逆)−1−1−1=+A()ABB((AA)=)−−11−1法2:验证()A+BA()ABBI+=−1−1−1−1−1左边=+()()EBAAAA()+BB(为满足AAI=,先右提
7、A,)−1−1=+()EBA()AB+B(化简)−1−1−1−1=++B()BAB()AB(为满足()A++=BAB()I,左提B)−1==BBI=右边三.计算下列n阶行列式(每题10分,共30分)011"11n−111""1111111111"11101"11n−−101""1110111010"00110"11n−−110""1111011001"001.答案:==()nn−=11()−####################111"01n−−111""0111101000"10111"10n−−111""1011110000"01
8、n−1=()−−1()n1(思路:将各列加到第一列,提公因式)ab00"0ab00""0b000000ab"000ab""0ab00000a"0011++00aa""00n10b002.答案:=−ab()1