a new approach to linear filtering and prediction problems.PDF

a new approach to linear filtering and prediction problems.PDF

ID:34125536

大小:167.49 KB

页数:12页

时间:2019-03-03

a new approach to linear filtering and prediction problems.PDF_第1页
a new approach to linear filtering and prediction problems.PDF_第2页
a new approach to linear filtering and prediction problems.PDF_第3页
a new approach to linear filtering and prediction problems.PDF_第4页
a new approach to linear filtering and prediction problems.PDF_第5页
资源描述:

《a new approach to linear filtering and prediction problems.PDF》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ANewApproachtoLinearFiltering1andPredictionProblemsR.E.KALMANResearchInstituteforAdvancedStudy,2Theclassicalfilteringandpredictionproblemisre-examinedusingtheBode-Baltimore,Md.Shannonrepresentationofrandomprocessesandthe“statetransition”methodofanalysisofdynamicsystems.Newre

2、sultsare:(1)Theformulationandmethodsofsolutionoftheproblemapplywithoutmodifica-tiontostationaryandnonstationarystatisticsandtogrowing-memoryandinfinite-memoryfilters.(2)Anonlineardifference(ordifferential)equationisderivedforthecovariancematrixoftheoptimalestimationerror.Fro

3、mthesolutionofthisequationtheco-efficientsofthedifference(ordifferential)equationoftheoptimallinearfilterareob-tainedwithoutfurthercalculations.(3)Thefilteringproblemisshowntobethedualofthenoise-freeregulatorproblem.Thenewmethoddevelopedhereisappliedtotwowell-knownproblems,c

4、onfirmingandextendingearlierresults.Thediscussionislargelyself-containedandproceedsfromfirstprinciples;basicconceptsofthetheoryofrandomprocessesarereviewedintheAppendix.IntroductionPresentmethodsforsolvingtheWienerproblemaresubjecttoanumberoflimitationswhichseriouslycurtailt

5、heirpracticalANIMPORTANTclassoftheoreticalandpracticalusefulness:problemsincommunicationandcontrolisofastatisticalnature.Suchproblemsare:(i)Predictionofrandomsignals;(ii)separa-(1)Theoptimalfilterisspecifiedbyitsimpulseresponse.Itistionofrandomsignalsfromrandomnoise;(iii)det

6、ectionofnotasimpletasktosynthesizethefilterfromsuchdata.signalsofknownform(pulses,sinusoids)inthepresenceof(2)Numericaldeterminationoftheoptimalimpulseresponseisrandomnoise.oftenquiteinvolvedandpoorlysuitedtomachinecomputation.Inhispioneeringwork,Wiener[1]3showedthatproblems

7、(i)Thesituationgetsrapidlyworsewithincreasingcomplexityofand(ii)leadtotheso-calledWiener-Hopfintegralequation;hetheproblem.alsogaveamethod(spectralfactorization)forthesolutionofthis(3)Importantgeneralizations(e.g.,growing-memoryfilters,integralequationinthepracticallyimporta

8、ntspecialcaseofnonstationaryprediction)requirenewderivations,frequentlyofst

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。