on the curvature integral of a remannian manifold.pdf

on the curvature integral of a remannian manifold.pdf

ID:33938435

大小:684.73 KB

页数:12页

时间:2019-03-02

on the curvature integral of a remannian manifold.pdf_第1页
on the curvature integral of a remannian manifold.pdf_第2页
on the curvature integral of a remannian manifold.pdf_第3页
on the curvature integral of a remannian manifold.pdf_第4页
on the curvature integral of a remannian manifold.pdf_第5页
资源描述:

《on the curvature integral of a remannian manifold.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnnalsofMathematicsOntheCurvaturaIntegrainaRiemannianManifoldAuthor(s):Shiing-shenChernReviewedwork(s):Source:TheAnnalsofMathematics,SecondSeries,Vol.46,No.4(Oct.,1945),pp.674-684Publishedby:AnnalsofMathematicsStableURL:http://www.jstor.org/stable/1969203.Accessed:26

2、/07/201200:19YouruseoftheJSTORarchiveindicatesyouracceptanceoftheTerms&ConditionsofUse,availableat.http://www.jstor.org/page/info/about/policies/terms.jsp.JSTORisanot-for-profitservicethathelpsscholars,researchers,andstudentsdiscover,use,andbuilduponawiderangeofconte

3、ntinatrusteddigitalarchive.Weuseinformationtechnologyandtoolstoincreaseproductivityandfacilitatenewformsofscholarship.FormoreinformationaboutJSTOR,pleasecontactsupport@jstor.org..AnnalsofMathematicsiscollaboratingwithJSTORtodigitize,preserveandextendaccesstoTheAnnals

4、ofMathematics.http://www.jstor.orgANNALSOFMATHEMATICSVol.46,No.4,October,1945ONTHECURVATURAINTEGRAINARIEMANNIANMANIFOLDBYSHIING-SHENCHERN(ReceivedMay23,1945)IntroductionInapreviouspaper[1]wehavegivenanintrinsicproofoftheformulaofAllendoerfer-WeilwhichgeneralizestoRie

5、mannianmanifoldsofndimensionstheclassicalformulaofGauss-Bonnetforn=2.Themainideaoftheproofistodrawintoconsiderationthemanifoldofunittangentvectorswhichisintrinsi-callyassociatedtotheRiemannianmanifold.DenotingbyR'theRiemannianmanifoldofdimensionnandbyM2"'themanifoldo

6、fdimension2n-1ofitsunittangentvectors,ourproofhasled,inthecasethatniseven,toanintrinsicdifferentialformofdegreen-1(whichwedenotedbyII)inM2"'.WeshallintroduceinthispaperadifferentialformofthesamenatureforbothevenandodddimensionalRiemannianmanifolds.Wefindthatthisdiffe

7、rentialformbearsacloserelationtothe"CurvaturaIntegra"ofasubmanifoldinaRieman-nianmanifold,becauseitwillbeprovedthatitsintegraloveraclosedsubmani-foldofR'isequaltotheEuler-Poincarecharacteristicofthesubmanifold.Themethodcanbecarriedovertodeducerelationsbetweenrelative

8、topologicalinvariantsofasubmanifoldofthemanifoldanddifferentialinvariantsderivedfromtheimbedding,andsomeremarksaretobeaddedtothisef

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。