欢迎来到天天文库
浏览记录
ID:40360439
大小:268.16 KB
页数:14页
时间:2019-08-01
《Analysis of surface integral》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ARTICLEINPRESSEngineeringAnalysiswithBoundaryElements32(2008)196–209www.elsevier.com/locate/enganaboundAnalysisofsurfaceintegralequationsinelectromagneticscatteringandradiationproblemsPasiYla¨-Oijala,MattiTaskinen,SeppoJa¨rvenpa¨a¨ElectromagneticsLaboratory,HelsinkiUniversityofTechnolo
2、gy,FinlandReceived26April2007;accepted14August2007Availableonline1October2007AbstractPropertiesofvarioussurfaceintegralequationsofthefirstandsecondkindsarestudiedinelectromagneticscatteringandradiationproblems.Thesecond-kindequationsarefoundtogivebetterconditionedmatrixequationandfasterc
3、onvergingiterativesolutionsbutpoorersolutionaccuracythanthefirst-kindequations.Thesolutionaccuracyandmatrixconditioningseemtobealmostoppositepropertiesassociatedwiththesingularityofthekernelofintegraloperators.Themoresingular/smootherthekernel,themore/lessdiagonallydominantandthebetter/p
4、oorerconditionedthematrix,butthepoorer/betterthesolutionaccuracy.Accuracyoftheintegralequationsofthesecondkindcanbeimprovedbyincreasingtheorderofthebasisandtestingfunctions.However,therequiredexpansionorderseemstobeproblemdependent.Themoresingulartheunknown,thehighertheexpansionorderand
5、thefinerthediscretizationneededinordertomaintainthesolutionaccuracyofthesecond-kindequations.r2007ElsevierLtd.Allrightsreserved.Keywords:Electromagnetics;Galerkin’smethod;Integralequations;Iterativesolution;Scatteringandradiationproblems1.IntroductionbutgoodsolutionaccuracyandMFIEbehaves
6、viceversa[7,8].Hence,MFIEisbettersuitedforiterativeandfastRecentlyalotofresearchhasbeenmadeincomputa-methodsthanEFIE.However,MFIEhasbeenclearlylesstionalelectromagnetictodevelopfastsolversbasedonthepopularinpracticalsimulationsbecausethesolutionintegralequationmethods[1,2].Thesemethodsa
7、reaccuracyisoftenunsatisfactory[7].typicallybasedoniterativesolutionofamatrixequationThefundamentaldifferencebetweentheintegralequa-andinmanycasesthebottleneckinthesimulationsisthetionsofthefirstandsecondkindsistheidentityoperatorinconvergenceofiterativesolution.Hence,itisveryth
此文档下载收益归作者所有