alexandov space with curvature bounded below

alexandov space with curvature bounded below

ID:15503840

大小:3.04 MB

页数:59页

时间:2018-08-03

alexandov space with curvature bounded below_第1页
alexandov space with curvature bounded below_第2页
alexandov space with curvature bounded below_第3页
alexandov space with curvature bounded below_第4页
alexandov space with curvature bounded below_第5页
资源描述:

《alexandov space with curvature bounded below》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HomeSearchCollectionsJournalsAboutContactusMyIOPscienceA.D.AlexandrovspaceswithcurvatureboundedbelowThisarticlehasbeendownloadedfromIOPscience.Pleasescrolldowntoseethefulltextarticle.1992Russ.Math.Surv.471(http://iopscience.iop.org/0036-0279/47/2/R01)Viewthetableofcontentsfort

2、hisissue,orgotothejournalhomepageformoreDownloaddetails:IPAddress:193.51.104.69Thearticlewasdownloadedon27/09/2010at16:27Pleasenotethattermsandconditionsapply.UspekhiMatNauk47:2(1992),3-51RussianMath.Surveys47:2(1992),1-58A.D.Alexandrovspaceswithcurvatureboundedbelow(1)Yu.Bura

3、go,M.Gromov,andG.Perel'manCONTENTS§1.Introduction1§2.Basicconcepts4§3.Globalizationtheorem7§4.Naturalconstructions13§5.Burstpoints16§6.Dimension20§7.Thetangentconeandthespaceofdirections.Conventionsandnotation22§8.Estimatesofroughvolumeandthecompactnesstheorem31§9.Theoremonalm

4、ostisometry33§10.Hausdorffmeasure40§11.Functionsthathavedirectionalderivatives,themethodofsuccessive43approximations,levelsurfacesofalmostregularmaps§12.Levellinesofalmostregularmaps49§13.Subsequentresultsandopenquestions53References56§1.Introduction1.1.Inthispaperwedevelopthe

5、theoryof(basicallyfinite-dimensional)metricspaceswithcurvature(inthesenseofAlexandrov)boundedbelow[1],[2].Wearetalking,roughlyspeaking,aboutspaceswithanintrinsicmetric,forwhichtheconclusionofToponogov'sanglecomparisontheoremistrue(althoughonlyinthesmall);forprecisedefinitionss

6、ee§2.Thesespacesaredefinedaxiomaticallybytheirlocalgeometricproperties,withoutthetechniquesofanalysis.Theymayhavemetricandtopologicalsingularities,inparticular,theymaynotbemanifolds.TheclassconsideredincludesalllimitspacesofsequencesofcompleteRiemannianmanifoldswithsectionalcu

7、rvatureuniformlyboundedbelow.AlexandrovspacesarisenaturallyifRiemannianmanifoldsareconsideredfromtheviewpointofsyntheticgeometryandoneavoidstheexcessiveassumptionsofsmoothnessconnectedmWehaveusedthisspellingofAlexandrov,ratherthanAleksandrov,becauseofthetitleofthepaper(inEngli

8、sh)mentionedonp.4.(Ed.)2Yu.Burago,Μ.Gromov,andG.Perel'manwith

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。