资源描述:
《专题14直线和圆-2018年高考数学(理)备考易错点专项复习》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、1.(2017·北京卷)已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则·的最大值为________.解析:法一 由题意知,=(2,0),令P(cosα,sinα),则=(cosα+2,sinα),·=(2,0)·(cosα+2,sinα)=2cosα+4≤6,故·的最大值为6.法二 由题意知,=(2,0),令P(x,y),-1≤x≤1,则·=(2,0)·(x+2,y)=2x+4≤6,故·的最大值为6.答案:62.(2017·天津卷)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=
2、120°,则圆的方程为____________.3.【2017江苏,13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是▲.【答案】【解析】设,由,易得,由,可得或,由得P点在圆左边弧上,结合限制条件,可得点P横坐标的取值范围为.4.【2016高考新课标2理数】圆的圆心到直线的距离为1,则a=()(A)(B)(C)(D)2【答案】A【解析】圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:,解得,故选A.5.【2016高考上海理数】已知平行直线,则的距离___________.【答案】【解析】利用两平行线间距离公式得.6.【2016高考新课标3
3、理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】47.【2016高考新课标1卷】(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】(Ⅰ)()(II)【解析】(Ⅰ)因为,,故,所以,故.又圆的标准方程为,从而,所以.由题设得,,,由椭圆定义可得点的
4、轨迹方程为:().(Ⅱ)当与轴不垂直时,设的方程为,,.由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.8.【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程;(3)设点满足:存在圆上的两点和,使得,求实数的取值范围。【答案】(1)(2)(3)(2)因为直线l
5、∥OA,所以直线l的斜率为.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离因为而所以,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设因为,所以……①因为点Q在圆M上,所以…….②将①代入②,得.于是点既在圆M上,又在圆上,从而圆与圆没有公共点,所以解得.因此,实数t的取值范围是.易错起源1、直线的方程及应用例1、(1)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是( )A.1或3B.1或5C.3或5D.1或2(2)已知两点A(3,2)和B(
6、-1,4)到直线mx+y+3=0的距离相等,则m的值为( )A.0或-B.或-6C.-或D.0或答案 (1)C (2)B解析 (1)两直线平行,则A1B2-A2B1=0且A1C2-A2C1≠0或B1C2-B2C1≠0,所以有-2(k-3)-2(k-3)(4-k)=0,解得k=3或5,且满足条件,故正确答案为C.(2)依题意,得=.所以
7、3m+5
8、=
9、m-7
10、.所以(3m+5)2=(m-7)2,所以8m2+44m-24=0.所以2m2+11m-6=0.所以m=或m=-6.【变式探究】已知直线l1:ax+2y+1=0与直线l2:(3-a)x-y+a=0,若l1⊥
11、l2,则a的值为( )A.1B.2C.6D.1或2答案 D解析 由l1⊥l2,则a(3-a)-2=0,即a=1或a=2,选D.【名师点睛】(1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.【锦囊妙计,战胜自我】1.两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2⇔k1=k2,l1⊥l2⇔k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在.2.求直线方程要注意几种直线方程的局限性.点斜式、两点式、斜截式要求直线不能与x轴垂直.而截距式
12、方程不能表示过原点的直线,也不能表示垂