函数的应用举例基础练习.doc

函数的应用举例基础练习.doc

ID:33219746

大小:55.00 KB

页数:6页

时间:2019-02-22

函数的应用举例基础练习.doc_第1页
函数的应用举例基础练习.doc_第2页
函数的应用举例基础练习.doc_第3页
函数的应用举例基础练习.doc_第4页
函数的应用举例基础练习.doc_第5页
资源描述:

《函数的应用举例基础练习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高考网www.gaokao.com函数的应用举例·基础练习 (一)选择题1.半径为R的半圆上任一点P为顶点,以直径AB为底边的△PAB的面积S与高PD=x的函数关系式是[]A.S=Rx  B.S=2Rx(x>0)C.S=Rx(0<x≤R)D.S=πx2(0<x≤R)2.某工厂1988年的产值为a万元,预计产值每年以n%递增,则该厂到2000年的产值(单位:万元)是[]A.a(1+n%)13   B.a(1+n%)12C.a(1+n%)11D.a(1-n%)123.按复利计算利率的储蓄,存入银行2万元,年息8%,5年后支取,本利和应为人民币________元.[]A.2(1+0.8)5 B.2(

2、1+0.08)5C.2(1+0.8)4 D.2(1+0.08)44.按复利计算利率的储蓄,存入银行2万元,年息8%计算,5年后支取,可得利息为人民币________元.[]A.2(1+0.8)5 B.2(1+0.08)5C.2(1+0.08)5-2   D.2(1+0.08)4-25.从1981年到本世纪末的20年,我国力争使全国工农业总产值翻两番,如果每年增长8%,达到翻两番目标的年数为_________.(已知lg2=0.301,lg3=0.477)[]A.17B.18C.19D.206.某商品零售价1993年比1992年上涨25%,欲控制1994年比1992年上涨10%,则1994年应比

3、1993年降价[]A.15%  B.12%C.10%  D.5%7.某厂原来月产量为a,一月份减产10%,二月份比一月份增产10高考网www.gaokao.com高考网www.gaokao.com%,设二月份产量为c,则[]A.a=cB.a>cC.a<c  D.无法比较a、c的大小8.某厂第三年产量比第一年产量增长44%,每年的平均增长率相同(设为x),则如下结论正确的是[](Ax>22%B.x=22%C.x<22%   D.x的大小由第一年的产量确定(二)填空题1.长20m的铁丝网围成一个长方形场地,最大面积是________;若一边靠墙,能围成的最大面积是________.量y随时间x变化

4、的关系式是________.3.按复利计算利率的储蓄,存入银行2万元,年息8%,5年后支取,可得利息为人民币________(元)(精确到分).4.一种产品原来的成本价为a元,计划每年降低P%,则成本y随年数x变化的函数关系式是________.5.有浓度为a%的酒精一满瓶共m升,每次倒出n升,再用水加满,一共倒了10次,加了10次水后瓶内酒精浓度为________.(三)解答题1.根据国家统计局资料,到1989年4月,我国大陆人口总数已达到11亿,人口自然增长率约为千分之十四,问按此自然增长率,只需经过多长时间,我国大陆人口就会达到12亿?(精确到0.1年).(已知lg2=0.3010lg3

5、=0.4771lg11=1.0414lg1.014=0.0060)2.某厂生产某产品x吨所需费用为P元,而卖出x吨产品的价格为卖掉,且当产量为150吨时利润最大,此时每吨价格为40元,求实数a、6的值.3.已知某种商品涨价x成(1成=10%)时,售出的数量减少mx成(m是正的常数).(2)如果适当的涨价,能使营业额增加,求m的取值范围.4.如图2.9-4所示,在矩形ABCD中,AB=a,BC=b(0<a<b),在四条边长上分别取E、F、G、H点,使AE=AH=CG=CF=x,建立四边形EFGN的面积S与x之间的函数关系式,并求x为何值时S最大?高考网www.gaokao.com高考网www.g

6、aokao.com参考答案 (一)选择题2.B.解:由增长率公式得a(1+n%)12.3.B.解:由复利公式得2(1+0.08)5.4.C.解:五年后的本利和为2(1+0.08)5,再减去本金所剩是:2(1+0.08)5-2即为所求.5.C.解:设1981年的产值为a,由题意得a(1+0.08)n=4a6.B.解:设1992年的价格为a,则1993年的价格为:a(1+25%),1994年价格为a(1+10%),设1994年比1993年的价格降价x%,0.22.∴选C.(二)填空题1.25m2,50m2.高考网www.gaokao.com高考网www.gao

7、kao.com+25≤25,当x=5,Smax=25m2.设宽边为x,则长边=20-2x,面积为(20-2x)x=-2(x-5)2+50.当x=5时,Smax=50m2.3.9386.56元.解:利息为2(1+0.08)5-2=0.938656万元.4.y=a(1-P%)x.(三)解答题1.解:设经过x年我国大陆人口达到12亿,则11(1+0.014)x=12答:经过6.3年我国大陆人口达到12亿

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。