摭谈高中数学概念教学有效策略

摭谈高中数学概念教学有效策略

ID:32988558

大小:55.92 KB

页数:5页

时间:2019-02-18

摭谈高中数学概念教学有效策略_第1页
摭谈高中数学概念教学有效策略_第2页
摭谈高中数学概念教学有效策略_第3页
摭谈高中数学概念教学有效策略_第4页
摭谈高中数学概念教学有效策略_第5页
资源描述:

《摭谈高中数学概念教学有效策略》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、摭谈高中数学概念教学有效策略摘要:数学概念是客观事物中数与形本质属性的反映,它不仅是构建数学理论大厦的基石,而且是进行数学判断和推理的逻辑基础。《高中数学课程标准》指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终。然而,现实教学中,受应试教育的影响,不少教师重解题、轻概念,在教学中或轻描淡写地讲概念,或反复以题练概念,这样常常造成学生概念理解不清、不深,从而严重影响学生数学思维能力的拓展。关键词:高中;数学;概念;教学;策略中图分类号:G633.6文献标识码:B文章编号:1006-5962(20

2、13)08-0176-01数学概念是客观事物中数与形本质属性的反映,它不仅是构建数学理论大厦的基石,而且是进行数学判断和推理的逻辑基础。《高中数学课程标准》指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终。然而,现实教学中,受应试教育的影响,不少教师重解题、轻概念,在教学中或轻描淡写地讲概念,或反复以题练概念,这样常常造成学生概念理解不清、不深,从而严重影响学生数学思维能力的拓展。对待数学概念教学,尤其是核心概念,我们一定要”不惜时、不惜力”,因为”数学概念高度凝结着数学家的思维,是数学地认识事

3、物的思想精华,是数学家智慧的结晶,它蕴含了最丰富的创新教育素材。数学是玩概念的,数学是用概念思维的,在概念学习中养成的思维方式、方法迁移能力也最强,所以数学概念教学的意义不仅在于使学生掌握'书本知识',更重要的是让他们从中体验数学家概括数学概念的心路历程,领悟数学家用数学的观点看待和认识世界的思想真谛,学会用概念思维,进而发展智力和培养能力。”教学中,如何提高数学概念教学的实效性,下面结合实际提出一些有效教学策略。1提供丰富的具象材料,引导学生进行抽象概括数学教材中概念的呈现,多是直接给出。教学中,如果教师让学生读概念、记概念,或者直接给学生讲概

4、念,往往会让学生在知识接受上有突兀感。其实,学生理解和掌握概念的过程,实际上是掌握同类事物的共同本质属性的过程。因此,教师在概念教学中,应为学生提供丰富的感性材料,引导学生通过对具体实例进行抽象概括,从而自然形成数学概念。例如,学习”棱锥”这个概念,首先可向学生展示生活中各种棱锥物体,如金字塔图、天然水晶或其它棱锥模型等,同时也可让学生根据自己的观察和理解,举出有关棱锥的物体,然后,引导学生分析归纳”棱锥”的关键信息:凸多面体、底面是多边形、侧面是有一个公共顶点的三角形等,这样学生就很容易理解掌握概念了。2重视概念的形成过程,引导学生进行思维锻炼

5、人教版的主编寄语中说:”数学概念、数学方法与数学思想的起源与发展都是自然的。如果有人感到某个概念不自然,是强加于人的,那么只要想一下它的背景,它的形成过程,它的应用,以及它与其他概念的联系,你就会发现它实际上是水到渠成、浑然天成的产物,不仅合情合理,甚至很有人情味。”这应该成为概念教学的基本指导思想。概念课就应该重视概念的形成过程,使概念引出自然、水到渠成。这种自然和水到渠成应包括两方面:一是知识的逻辑顺序自然;二是学生心理逻辑的自然,主要是思维过程的自然。如”平面向量的实际背景及基本概念”一节,从”概念的形成”的角度看,本节内容,重要的不是向量

6、的形式化定义及几个相关概念,而是获得数学研究对象、认识数学新对象的基本方法,以及其中所蕴含的刻画和研究现实事物的方法和途径。教学时,可引导学生经历从具体事例,如位移、力、速度等中领悟”向量”概念的本质特征,类比数的概念获得”向量"概念的定义及表示,类比数的集合认识”向量的集合”,类比直线(段)的基本关系认识”向量的基本关系”,从而帮助学生从中体会到,理解和掌握一个数学概念,应从具体背景中抽象出其共同本质特征。3加强易混概念的比较学习,引导学生建构完整概念体系数学中有许多概念都有着密切的联系,如平行线段与平行向量,平面角与空间角,方程与不等式,映射

7、与函数等等,因此,在教学中,应重视易混概念的比较学习,通过分析概念间的联系与区别,帮助学生掌握概念的本质,建构完整概念体系。比如对分类计数原理与分步计数原理、排列与组合的概念,就可以通过概念对比,并结合实例的方式加深概念理解。又如在概率教学中,就有许多对学生易混概念:如”非等可能”与”等可能”;”互斥”与”独立”;”条件概率”与”积事件的概率”;”互斥”与”对立”等;例,把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件”甲分得红牌”与”乙分得红牌”是()o(A)对立事件(B)不可能事件(C)互斥但不对立事件(D)以上均

8、不对。错解:(A)o剖析:本题错误的原因在于把”互斥”与”对立”混同,二者的联系与区别主要体现在:①两事件对立必定互斥,但互斥未必对立;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。