探究小学数学思想方法应用

探究小学数学思想方法应用

ID:32942162

大小:59.20 KB

页数:5页

时间:2019-02-17

探究小学数学思想方法应用_第1页
探究小学数学思想方法应用_第2页
探究小学数学思想方法应用_第3页
探究小学数学思想方法应用_第4页
探究小学数学思想方法应用_第5页
资源描述:

《探究小学数学思想方法应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、探究小学数学思想方法应用【摘要】数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。而小学数学教材是数学教学的显性知识系统,看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。而数学思想方法是数学教学的隐性知识系统。【关键词】数学思想方法;小学数学数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思想方法”。而小学数学

2、教材是数学教学的显性知识系统,看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。而数学思想方法是数学教学的隐性知识系统。因此,教师在小学数学教学中,要使“数学方法”与"数学思想”结合,于无形之中让学生在学习数学的时候了解到解决问题的思路以及由来,从而培养学生的解决问题以及数学能力,从而学会独立借用数学思想解决问题。正所谓“授之以鱼,不如授之于渔”,要让学生知道如何解决这道题的同时,更知道解决问题的思想,从而受到启发,能解决于此类似或相关甚至变换、延伸出来的问题,提升学生数学素质

3、。一、数形结合的思想方法数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,

4、这些都体现了数形结合的思想。二、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四

5、边形集合包含长方形集合,四边形集合又包含平行四边行集合等。三、化归思想化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、"转换”。它具有不可逆转的单向性。例:狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒种都只跳一次。比赛途中,从起点开始,每隔123/8米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?这是一个实际问题,但通过分析知道,当狐狸(

6、或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,问题就基本解决了。上面的思考过程,实质上是把一个实际问题通过分析转化、归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之四、极限的思想方法极限的思想方法是人们从有限中认识无限,从近似

7、中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会"无限”思想;在循环小数这一部分内容中,1十3=0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。那如何加强数学思想方法的渗透呢?要在教学中时刻提醒数学思想的渗透并

8、注重反复性。作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。数学思想方法是在启发学生思维过程中逐步积累和

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。