资源描述:
《中考的数学几何最值专题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文案几何中的最值问题几何中最值问题包括:“面积最值”及“线段(和、差)最值”.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解;求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.一般处理方法:线段最大(小)值线段差最大线段和(周长)最小平移对称旋转平移对称旋转转化构造三角形使目标线段与定长线段构成三角形使点在线同侧(如下图)使点在线异侧(如下图)三角形三边关系定理三点共线时取得最值两点之间,线段最短垂线段最短常用定理:1、两点之间,线段最短(已知两个定点时)2、垂线段最短(已知一个
2、定点、一条定直线时)3、三角形三边关系(已知两边长固定或其和、差固定时)
3、PA-PB
4、最大,需转化,使点在线同侧PA+PB最小,需转化,使点在线异侧4、圆外一点P与圆心的连线所成的直线与圆的两个交点,离P最近的点即为P到圆的最近距离,离P最远的点即为P到圆的最远距离精彩文档实用标准文案类型一线段和最小值1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为______cm.第1题图第2题图2.如图,点P是∠AOB内一定点,点M、N分别在边
5、OA、OB上运动,若∠AOB=45°,OP=3,则△PMN周长的最小值为.3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为.第3题图第4题图4.如图,在菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+QK的最小值为.5.如图,当四边形PABN的周长最小时,a=.6.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E、F为边OA上的两个动点,且EF=2,当四
6、边形CDEF的周长最小时,则点F的坐标为.第5题图第6题图精彩文档实用标准文案变式加深:1、如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.D.2、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为3、如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CF交BD于点G,连接BE交AG与点H。若正方形的边长为2,则线段D
7、H长度的最小值是4、如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.若将△ABP中边PA的长度改为,另两边长度不变,则点P到原点的最大距离变为_________.类型二线段差最大值1、如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于.2、点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得的值最大的点,Q是y轴上使得QA+Q
8、B的值最小的点,则= .3、如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.B.(1,0)C.D.精彩文档实用标准文案4、一次函数y1=kx-2与反比例函数y2=(m<0)的图象交于A,B两点,其中点A的坐标为(-6,2)(1)求m,k的值;(2)点P为y轴上的一个动点,当点P在什么位置时
9、PA-PB
10、的值最大?并求出最大值.核心:画曲为直1、已知如图,圆锥的底面圆的半径为1,母线长OA为2,C为母线OB的中点.在圆锥的侧面上,一只蚂蚁从点
11、A爬行到点C的最短线路长为.2、如图,圆柱底面半径为,高为,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为。3、在锐角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是OCBA精彩文档实用标准文案类型三线段最值1、已知⊙O是以原点为圆心,为半径的圆,点P是直线上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为________2、在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与圆O交于
12、B、C两点