资源描述:
《坐标系及参数方程重点解析及典型例题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、坐标系及参数方程重点解析及典型例题坐标系与参数方程的主要内容是极坐标和直角坐标的互化,曲线的参数方程与普通方程的互化,以及参数方程和极坐标的简单应用三部分,下面针对这三部分内容进行透析:一、坐标系了解极坐标系;会在极坐标系中用极坐标刻画点的位置;会进行极坐标和直角坐标的互化.特别提醒:1.平面上任意一点的极坐标不是唯一的;2.点的直角坐标化为极坐标,通常用如下方法:P二x2+y2,tana=
2、yx
3、,aG(0,Ji2),当6在第一、第二、第三、第四象限时,极角9分别取a、n—a、ji+a.2n—a;3.极坐标方程与直角坐标方程互化要注意其等效性.极坐标和直角
4、坐标互化的前提条件是:(1)极点与直角坐标系的原点重合;(2)极轴与直角坐标系的x轴正半轴重合;(3)两种坐标系取相同的长度单位.设点P的直角坐标为(x,y),它的极坐标为(P,0),则互化公式是x二Pcos0y=psin0或p2-x2+y2tan9=yx;若把直角坐标化为极坐标,求极角0时,应注意判断点P所在的象限(即角0的终边的位置),以便正确地求出角9,在转化过程中注意不要漏解,特别是在填空题和解答题中,则更要谨慎漏解.例1取直角坐标系的原点为极点,X轴的正半轴为极轴,则点M(—1,—3)的极坐标为.分析:把直角坐标化为极坐标主要是求出求出P与角9即可
5、.解:利用互化公式,可得P=2,tana=3,又点M是第三象限内的点,可得0=43Ji,故点M的极坐标为(2,43Ji).点评:可以利用数形结合,直接得出答案;也可以利用互化的公式得出答案但也要注意点的位置与极角的关系.例2若限定P20,0W。W2",则曲线Psin9=2与11P=4sin0的交点的极坐标为分析:把极坐标方程化为直角坐标方程,可求出交点的直角坐标,再化为极坐标或联立方程即可求出P与角0・解:法一:把两个极坐标方程化为直角坐标方程,可得y=2与x2+(y-2)2=4,利用数形结合可得到交点坐标为(2,2)和(一2,2),由P20贝HP=22,由
6、tanO=±l,又0WeW2JI,・•・e二兀4或0=3JI4.则两曲线交点的极坐标为(22,n4)或(22,3n4).法二:把P=4sin9代入到Psin0=2,注意到P20,得到sin0=22,从而0=Ji4或0=3n4,再得到P=22.则两曲线交点的极坐标为(22,口4)或(22,3口4).点评:本题用了两种解法,化成直角坐标要稍麻烦一点,直接联立方程可以方便的求出P与角。・二、曲线的极坐标方程了解曲线的极坐标方程的求法;会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程.特别提醒1.在极坐
7、标系中,以极点为圆心,r为半径的圆的极坐标方程是P=r;2・在极坐标系中,以C(a,0)(a>0)为圆心,a为半径的圆的极坐标方程是P=2acos0;3.在极坐标系中,以C(a,兀2)(a>0)为圆心,a为a,半径的圆的极坐标方程是P=2asin0;1.在极坐标系中,0=a(P20)表示以极点为起点的一条射线;0二a(pGR)表示过极点的一条直线;2.在极坐标系中,过点A(a,0)(a>0),且垂直于极轴的直线1的极坐标方程是Pcose=a.例3若曲线的极坐标方程为P=2sin0+4cos0,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方
8、程为・分析:本题考查极坐标方程与直角坐标方程的互化.要把已知条件与x=pcos0y=Psin0联系起来,即可得到曲线的直角坐标方程.解:将p=2sin0+4cos0,两端同乘以P得,P2=2Psin9+4Pcos6,贝Ux2+y2=2y+4x,即x2+y2—4x—2y=0.点评:本题中曲线的极坐标方程只要在两端同乘以P,再根据直角坐标和极坐标直角的关系就很容易得出该曲线的直角坐标方程.例4已知圆心在M(a,0),半径为R,试写出圆的极坐标方程.分析:先建立直角坐标系找出动点P所在的三角形,再利用三角形中的余弦定理.解:如图,在AOPM中,由余弦定理可得:P2
9、—2aPcos9+a2—R2-0.点评:建立直角坐标系找出动点P所在的三角形是解决此类问题的关键,三解形中的余弦定理是解决本题的工具.三、参数方程了解抛物运动轨迹的参数方程及参数的意义.理解直线的参数方程及其应用;理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用.会进行曲线的参数方程与普通方程的互化.特别提醒:1.曲线的参数方程不是唯一的,选择不同的参数,得到的参数方程也不同;2•注意直线的参数方程中参数的几何意义及其应用.例5直线x=3+tsin40°y=—tcos40°(t为参数)的倾斜角是.分析:将参数方程化为直线参数方程的标准形式即可得到直线的
10、倾斜角,也可以将参数方程化为直线的斜截式方程,求出斜