8、丙)(甲丁),(乙丙),(乙丁),(丙丁),则甲、乙2首歌曲至少有1首被播放得基本事件有(甲乙),(甲丙)(甲丁),(乙丙),(乙丁)所以甲、乙2首歌曲至少有1首被播放5的概率是64.右图是一个算法流程图,则输出的&的值是.【答案】3【解析】由题得:S=l,k=l得S=2,否,k=2,S=6,否,k=3,S=15>10,是,所以k=35.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其屮大一年级抽取200人,大二年级抽取100人.若其他年级共有学生3000人,则该校学生总人数
9、是_・【答案]7500500【解析】设总人数为x,则分层抽取比例为x,而大一,大二共抽取300人,500——(x-3000)=300且大一,大二的总人数为x・3000,所以x得x=75006.设等差数列冋}的前刀项和为Sn.若公差d=2,as=10,贝IJ%的值是_【答案】11010(3^3^)a.=aR+d=辽那“=----------------=5(aR+aA)=1102【解析】由题可知:7.在锐角中,AB=3,AC=4.若的面积为瑯,则阮的长是-AB•AC•sinA=3(3=>sinA22,又为锐角三角形,所以A=
10、60【解析】由题可知:【答案】4.222b+c-a_cosA=2bc由余弦定理22a>08.在平面直角坐标系中,若双曲线a()经过抛物线y=8x的焦点,则该双曲线的离心率是.2【答案】【解析】抛物线的焦点为:(2,0)所以双曲线的a=2,又b=l,故离心率为:c店e=-=—a22H9.已知圆锥的侧面展开图是半径为3,圆心角为3的扇形,则这个圆锥的高为S=-nr2=3n【解析】由题得扇形得面积为:3,根据题意圆锥的侧面展开图是半径【答案】2&为3即为圆锥的母线,由圆锥侧面积计算公式:酎2刃=3耐二加=,1,所以圆锥的高10.
11、若直线y=2x+b为曲线y=ex+x的一条切线,则实数b的值是_.【答案】1【解析】设切点为傀疋+X。),乂yJf+iF+l=2^xo=Oy所以切点为(0,1)代入直线得b=ly411.若正实数x,y满足x+y=i,贝gxy的最小值是_.【答案】8y4y(x+y)x4y4xy4-+-=-+--------------=-+—+4>8-+-【解析】xyxyxy当y=2x取得等号,所以xy的最小值是8ABCD12.如图,在直角梯形+,AB//DCZABC=90°,AB=3ZBC=DC=2,若E,F分别是线【答案】卜4,6]【解
12、析】以AB为x轴,BC为y轴建立直角坐标系,则A(-3,0),C(0,2),设F(0,m),E(n,2)故AC•EF=2m・3n・4,由图可知:13、2x+2y6+4yJ3+2y~PB'(x-i)2My^D22PAJX+(y+2)J6+4y段DC和BC上的动点,则AC•丘的取值范围是_________.而2表示圆上一点与点2’2的斜率,所以当过点2’2的直线与圆相切吋取y+-=k(x——)k.=一一,k7=1——k=——27得最值,设直线:2由d=r得所以PA的最大值时7,故点睛:首先根据问题将PA的表达式列出来,做最值问题的小题,首先得明确问题表达式,然后根据函数或者基本不等式求解最值,本题解题关键在于,写出表达式后耍将其化为斜率的定义求法来理解从而求得结论f(X)=
14、{314.已知函数x-3x,x