资源描述:
《2014届雅安中学高三上学期12月月考文科数学试题及答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、雅安中学2014届高三上学期12月月考试题数学(文)本试卷分为第I卷(选择题〉和第II卷(非选择题)两部分。满分150分,考试时间120分钟。考试结束后,将答题卷和机读卡一并收回。第I卷(选择题,共50分》一.选择题:本大题共10小题,每小题5分,共50分•在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合P={1,2},Q二{z
2、z二x+y;x,ywP},则集合Q为()(A){1,2,3}(B){2,3,4}(0{3,4,5}(D){2,3}2.已知命题p:3xe7?,x-2>lgx,命^q;fxeR.x1>0,则(
3、)(A)命题P7q是假命题(B)命题P^q是真命题(C)命题pv(-ig)是假命题(D)命题pa(-!(/)是真命题3.某校在一年一度的“校园十佳歌手”比赛中,9位评委为参赛选手A给出的分数的茎叶图如图所示•在去掉一个最高分和一个最低分后,得出选手A得分的中位数是(A)93(091(B)92(D)90’斥厂sinx+c°sxnil人匚“冃4.已知=3,则tanx的值是sinx-cosx(A)2(B)-2(03选手川得分88999235212(D)-35.已知a是函数f(x)二鬥x的零点,若0Vx°Va,则f(x0)的值满足(〉7(A)f(
4、xo)=0(C)f(x0)<0(B)f(xo)>0(D)f(xo)的符号不确定6.函数/(无)=0+1的大致图象为(A)(D)7.(B)(C)在AABC中,若sinA-sinAcosC=cosAsinC,则AABC的形状是(A)正三角形(B)等腰三角形(C)直角三角形(D)等腰直角三角形[2x-y02(A)1(B)7^2(0丄(D)丄416329.如图,在三棱锥S—ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦
5、值为1313(C)还(D)迹1313B10.定义在R上的函数/(兀)满足/(3)=1,/(-2)=3,广(切为f(x)的导函数,已知U的图象如图所示,且/©)有且只有一个零点,若非负实数a,b满足f(2d+b)Wh/(—d—2b)W3,则一的取值范冃Q+1(A)(0(B)(0,半]U13,+8)5(D)(0,自U15,+8)5第II卷(非选择题,共100分〉二•填空题:本大题共5小题,每小题5分,共25分.门•某学校高中三个年级的学生人数分别为=高一950人,髙二1000人,高三1050人•现要调查该校学生的视力状况,考虑采用分层抽样的方
6、法,抽取容量为60的样本,则应从高三年级中抽取的人数为12.已知向量o、b满足方+为=(0,1),方—B=(—1,2),则a-b=13.当x>l时,log2x2+logv2的最小值为JT214.已知角0,0,7构成公差为勺的等差数列•若COS0=-刁,贝
7、JCOSQ+COS7=15.如图,在AABC中,AH^BC=O^且AH=1,G为AABC的重心,则而•鬲==三•解答题:本大题共6小题,共75分.16.(本小题满分12分〉已知向Ma=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),IS/(x)=cfb,xeR.
8、(I)化简函数f(x)的解析式并求其最小正周期;(II)当xe[0,彳]时,求函数f(x)的最大值及最小值.NB17.(本小题满分12分)已知久〃分别在射线CM、CN(不含端点C〉上运动,2ZMCN=-ti9在AABC中,角AvB.C所对的边分别3是cz、bc・(I〉若b、c依次成等差数列,且公差为2.求c的值;(II)若C=V3,ZABC=e,试用0表示AABC的周长,并求周长的最大值.BE二*PA,F为PA的中点.18.(本小题满分12分),戰ABCD中,BC二2,AB=1,PA丄麺ABCD,BE//PA,(I)求证:DF//平面P
9、EC(II)记四棱锥C一PABE的体积为V1f三棱锥P—ACD的体积为V2,求卜的值.19.(本小题满分12分)UlZrn〒妬几、[F—X+l,XG[1,2]已知函数fM=…、[2x—Lxg(―°°,1)u(2,+°°)(I)解关于X的不等式-/(%)2时,尤=%%,neN”。・⑴求数列{%}的通项公式色;(II)若b„=(2n-l)an,求数列血}的前n项和S“;(III
10、)是否存在正整数对(m,n),使等式(Tn-man+4m=0成立?若存在,求出所有符合条件的(gn);若不存在,请说明理由.21.(本小题满分14分》已知函数/(x)=lnx,g(x)=a(x