1312线段的垂直平分线的性质教案

1312线段的垂直平分线的性质教案

ID:32593262

大小:88.54 KB

页数:5页

时间:2019-02-13

1312线段的垂直平分线的性质教案_第1页
1312线段的垂直平分线的性质教案_第2页
1312线段的垂直平分线的性质教案_第3页
1312线段的垂直平分线的性质教案_第4页
1312线段的垂直平分线的性质教案_第5页
资源描述:

《1312线段的垂直平分线的性质教案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、§13.1.2线段的垂直平分线的性质——授课人:余炼锐授课年级:八年级一、教学内容分析《线段的垂直平分线的性质》选自人教版《义务教育教科书•八年级上册》(2013版)第十三章《轴对称》第一单元第二课。在此Z而,学生学习了全等三角形,对轴对称图形的性质冇所认识,这为过渡到本节的学习起着铺垫作用。木节内容是今后证明线段相等和直线互相垂直的依据,因此本节课具有承上启下的重要作用。二、学生学情分析学生在此之前已经学习了轴对称图形,对线段的垂直平分线已经冇了初步的认识,这为顺利完成木节课的教学任务打下了基础,但处于该阶段

2、的学生语言表达能力较差,特别是儿何语言的描述不规范,本节课儿何语言理解表达问题较难,因此,教学屮要加强推理证明步骤的规范化。三、教学重难点重点:线段的垂直平分线定理和逆定理的证明和运用。难点:线段的垂直平分线定理和逆定理的证明和运用,线段的垂直平分线的画法。U!教学目标1•知识与技能(1)识记并理解线段垂直平分线的性质定理及其逆定理。(2)掌握垂线的尺规作图方法并理解作法的依据及合理性。2•过程与方法使学生经历证明理解线段垂直平分线的性质定理及其逆定理的过程,熟悉证明的步骤。3•情感态度与价值观通过对定理的探究

3、,培养学生自主学习勇于思考和探究的品质,让学生充分体会到探究的乐趣。五、教学过程设计1•温故知新,导入新课回顾线段的垂直平分线定义概念,探究线段的垂直平分线的性质。提问:什么是垂直平分线?垂直平分线具有哪些性质?[设计意图]:帮助学生回顾上节课所学的线段的垂直平分线的定义,同时为本节课学习线段的垂直平分线的性质作铺垫。得出定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。导入新课:如图,直线1垂直平分线段AB,Pl,P2,P3,…是1上的点,请猜想点Pl,P2,P3,…到点A与点B的距离之间

4、的数量关系。深入探究:请在图中的直线1上任取一点,那么这一点与线段AB两个端点的距离相等吗?猜想:线段垂直平分线上的点与这条线段两个端点的距离相等。2•验证猜想,证明性质利用全等三角形的性质证明线段垂直平分线上的点到线段两端点的距离相等。转化为几何语言:已知:如图,直线1丄AB,垂足为CMC二CB,点P在1上•求ffi:PA=PBo证明:J1丄AB・・・ZPCA=ZPCB又AC=CB,PC=PC・•・PA二PB。[设计意图]:使学生经历证明理解线段垂直平分线的性质定理的过程,熟悉证明的步骤。得出定义:线段垂直平

5、分线上的点与这条线段两个端点的距离相等。用儿何语言表示为:・・・CA=CB,1丄AB,・・・PA=PBo3•趁热打铁,认知1・如图,在AABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则AADE的周长等于—8—o2.如图,AD丄BC,BD二DC,点C在AE的垂直平分线上,AB,AC,CE的长度有什么关系?AB+BD与DE有什么关系?解:JAD丄BC,BD=DC・・・AD是BC的垂一直平分线・•・AB二AC・・・点C在AE的垂直平分线上・・・AC二CE.・•・AB二AC=CE•・・AB=CE,

6、BD二DC,・・・AB+BD=CDBDCE+CE.即AB+BD二DEo[设计意图]:在巩固学生对线段的垂直平分线的性质的认知基础上,让学生学会应用该性质解答相关问题。4•继续探究,判定证明询问线段的垂直平分线的性质的逆定理是否成立?让学生参照刚刚证明定理的过程,自C证明线段垂直平分线的判定定理提问:反过來,如果PA=PB,那么点P是否在线段AB的垂直平分线上呢?转化为几何语言:已知:如图,PA二PB.求证:PC丄AB且AC二BC。证明:如图作PC±AB则ZPCA=ZPCB=90°在RtAPCA和RtAPCB中,

7、・.・PA=PB,PC=PC・・・RtAPCA^RtAPCB(HL)・・・AC=BC又PC±AB・・・点P在线段AB的垂直平分线上课外思考:能否作AB的中线PC交AB于C,证明PC丄AB[设计意图]:通过对定理的探究,培养学生自主学习勇于思考和探究的品质,让学生充分体会到探究的乐趣。得出定义:线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。用儿何符号表示为:JPA二PB,・・・点P在AB的垂直平分线上。练习3:如图,AB二AC,MB二MC.直线AM是线段BC的垂直平分线吗?解:J

8、AB二AC・・・点A在BC的垂直平分线。・.・MB二MC•・・点M在BC的垂直平分线上・•・一直线AM是线段BC的垂直平分线。5•学以致用,尺规作图教师在黑板上作图,教会学生如何用尺规作图的方法经过直线外一点作已知直线的垂线。(1)为什么任意取一点K,使点K与点C在直线两旁?(2)为什么要以大于I"DE的长为半径作弧?(3)为什么直线CF就是所求作的垂线?[设计意图]:锻炼学生的动手操

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。