欢迎来到天天文库
浏览记录
ID:32580990
大小:3.05 MB
页数:15页
时间:2019-02-12
《2017-2018学年河南省南阳市高二下学期期中考试数学(理)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2017-2018学年河南省南阳市高二下学期期中考试数学(理)试题一、单选题1.已知为虚数单位,复数,则以下为真命题的是()A.的共轭复数为B.的虚部为C.D.在复平面内对应的点在第一象限【答案】D【解析】,的共轭复数为,的虚部为,,在复平面内对应的点为,故选D.2.设,,都是正数,则三个数,,()A.都大于2B.至少有一个大于2C.至少有一个不小于2D.至少有一个不大于2【答案】C【解析】分析:利用均值不等式,求解,即可得到结论.详解:由题意都是正数,则,当且仅当时,等号是成立的,所以中至少有一个不小于,故选C.点睛:本题主要考查了均值不等式的应用,其中解答中构造均值不等式的条件是
2、解答的关键,着重考查了学生的推理与运算能力.3.当在上变化时,导函数的符号变化如下表:14-0+0-则函数的图像大致形状为()A.B.C.D.【答案】C【解析】分析:根据上表中导函数的取值,得到函数的单调性,即可选出图象.详解:由上表可知,当时,,所以函数在单调递减;当时,,所以函数在单调递增,所以函数如选项C所示,故选C.点睛:本题主要考查了函数的导数与函数图象的关系,正确理解导函数与原函数的关系是解答的关键,着重考查了分析问题和解答问题的能力.4.直线与曲线相切于点,则的值为()A.-1B.0C.1D.2【答案】A【解析】由直线与曲线相切于点,则点满足直线的方程,即,即由,则,则
3、,解得,故选A.5.已知函数在处取得极大值10,则的值为()A.B.C.-2或D.-2【答案】B【解析】分析:由函数,求得,根据函数在处取得极大值,得方程组,即可求解的值,进而得到的值.详解:由函数,可得,因为函数在处取得极大值,则,即,解得或,经验证,当时,时取得极小值,不符合题意(舍去)所以,故选B.点睛:本题主要考查了利用导数研究函数的单调性与极值的应用,其中利用题设条件,列出方程组是解答的关键,其中对的值进行验证是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及推理与运算能力.6.利用数学归纳法证明不等式(,)的过程中,由变到时,左边增加了()A.1项B.项C.项D
4、.项【答案】D【解析】试题分析:时左面为,时左面为,所以增加的项数为【考点】数学归纳法7.若曲线与曲线在交点处由公切线,则()A.-1B.0C.2D.1【答案】D【解析】分析:由曲线与曲线在交点出有公切线,根据斜率相等,求解,根据点在曲线上,求得,进而求得的值,即可求解.详解:由曲线,得,则,由曲线,得,则,因为曲线与曲线在交点出有公切线,所以,解得,又由,即交点为,将代入曲线,得,所以,故选D.点睛:本题主要考查了导数的几何意义的应用,其中解答中根据在点处的公切线,建立方程求解是解答的关键,,着重考查了分析问题和解答问题的能力,以及推理与运算能力.8.若函数()有最大值-4,则的值
5、是()A.1B.-1C.4D.-4【答案】B【解析】分析:由函数,得,要使得函数有最大值,则,进而得函数的单调性,得当时,函数取得最大值,即可求解.详解:由函数,则,要使得函数有最大值,则,则当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取得最大值,即,解得,故选B.点睛:本题主要考查了导数在函数问题中的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数求解函数的最值等知识点的综合运用,着重考查了分析问题和解答问题的能力,以及推理与运算能力.9.函数在上有最小值,则实数的范围是()A.B.C.D.【答案】C【解析】分析:由函数,得,得到函数的单调性,再由,令
6、,解得或,结合函数的图象,即可求解实数的取值范围;详解:由函数,得,当时,,所以在区间单调递增,当时,,所以在区间单调递减,又由,令,即,解得或,要使得函数在上有最小值,结合函数的图象可得,实数的取值范围是,故选C.点睛:本题主要考查了导数在函数中的应用,其中解答中利用导数研究函数的单调性和极值是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.10.将正奇数1,3,5,7,…排成五列(如下表),按此表的排列规律,2019所在的位置是()A.第一列B.第二列C.第三列D.第四列【答案】C【解析】分析:由题意,得数字是第个奇数,又由数表可知,每行个数字,得第个奇数位于
7、第行的第2个数,即可判定,得到结论.详解:由题意,令,解得,即数字是第个奇数,又由数表可知,每行个数字,则,则第个奇数位于第行的第2个数,所以位于第三列,故选C.点睛:本题主要考查了归纳推理和数列知识的应用,其中认真审题,读懂题意是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.11.设定义在上的函数的导函数满足,则()A.B.C.D.【答案】A【解析】分析:由题意的,设,则,所以函数在上为单调递增函数,由,即可得到结果.详解:由定义在
此文档下载收益归作者所有