第一节 方差分析的基本原理与步骤.doc

第一节 方差分析的基本原理与步骤.doc

ID:32050441

大小:462.50 KB

页数:60页

时间:2019-01-31

第一节 方差分析的基本原理与步骤.doc_第1页
第一节 方差分析的基本原理与步骤.doc_第2页
第一节 方差分析的基本原理与步骤.doc_第3页
第一节 方差分析的基本原理与步骤.doc_第4页
第一节 方差分析的基本原理与步骤.doc_第5页
资源描述:

《第一节 方差分析的基本原理与步骤.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一节方差分析的基本原理与步骤方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。本节结合单因素试验结果的方差分析介绍其原理与步骤。一、线性模型与基本假定假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值。这类试验资料的数据模式如表6-1所示。表6-1k个处理每个处理有n个观测值的数据模式处理观测值合计平均A1x11x12…x1j…x1nA2x21x22…x2j…x2n……Aixi1xi2…xij…xin……Akxk1xk2…xkj…xknxk.合计表中表示第i个处理的第j

2、个观测值(i=1,2,…,k;j=1,2,…,n);表示第i个处理n个观测值的和;表示全部观测值的总和;表示第i个处理的平均数;表示全部观测值的总平均数;可以分解为(6-1)表示第i个处理观测值总体的平均数。为了看出各处理的影响大小,将再进行分解,令(6-2)(6-3)则(6-4)其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。显然有(6-5)εij是试验误差,相互独立,且服从正态分布N(0,σ2)。(6-4)式叫做单因素

3、试验的线性模型(linearmodel)亦称数学模型。在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。尽管各总体的均数可以不等或相等,σ2则必须是相等的。所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity)。这也是进行其它类型方差分析的前提或基本假定。

4、若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则(6-6)与(6-4)式比较可知,、、分别是μ、(μi-μ)=、(xij-)=的估计值。(6-4)、(6-6)两式告诉我们:每个观测值都包含处理效应(μi-μ或),与误差(或),故kn个观测值的总变异可分解为处理间的变异和处理内的变异两部分。二、平方和与自由度的剖分我们知道,方差与标准差都可以用来度量样本的变异程度。因为方差在统计分析上有许多优点,而且不用开方,所以在方差分析中是用样本

5、方差即均方(meansquares)来度量资料的变异程度的。表6-1中全部观测值的总变异可以用总均方来度量。将总变异分解为处理间变异和处理内变异,就是要将总均方分解为处理间均方和处理内均方。但这种分解是通过将总均方的分子──称为总离均差平方和,简称为总平方和,剖分成处理间平方和与处理内平方和两部分;将总均方的分母──称为总自由度,剖分成处理间自由度与处理内自由度两部分来实现的。(一)总平方和的剖分在表6-1中,反映全部观测值总变异的总平方和是各观测值xij与总平均数的离均差平方和,记为SST。即

6、因为其中所以(6-7)(6-7)式中,为各处理平均数与总平均数的离均差平方和与重复数n的乘积,反映了重复n次的处理间变异,称为处理间平方和,记为SSt,即(6-7)式中,为各处理内离均差平方和之和,反映了各处理内的变异即误差,称为处理内平方和或误差平方和,记为SSe,即于是有SST=SSt+SSe(6-8)(6-7),(6-8)两式是单因素试验结果总平方和、处理间平方和、处理内平方和的关系式。这个关系式中三种平方和的简便计算公式如下:(6-9)其中,C=x2··/kn称为矫正数。(二)总自由度的

7、剖分在计算总平方和时,资料中的各个观测值要受这一条件的约束,故总自由度等于资料中观测值的总个数减一,即kn-1。总自由度记为dfT,即dfT=kn-1。在计算处理间平方和时,各处理均数要受这一条件的约束,故处理间自由度为处理数减一,即k-1。处理间自由度记为dft,即dft=k-1。在计算处理内平方和时,要受k个条件的约束,即(i=1,2,…,k)。故处理内自由度为资料中观测值的总个数减k,即kn-k。处理内自由度记为dfe,即dfe=kn-k=k(n-1)。因为所以(6-10)综合以上各式得:

8、(6-11)各部分平方和除以各自的自由度便得到总均方、处理间均方和处理内均方,分别记为(MST或)、MSt(或)和MSe(或)。即(6-12)总均方一般不等于处理间均方加处理内均方。【例6.1】某水产研究所为了比较四种不同配合饲料对鱼的饲喂效果,选取了条件基本相同的鱼20尾,随机分成四组,投喂不同饲料,经一个月试验以后,各组鱼的增重结果列于下表。表6-2饲喂不同饲料的鱼的增重(单位:10g)饲料鱼的增重(xij)合计平均A131.927.931.828.435.9155.931.18A224.8

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。