欢迎来到天天文库
浏览记录
ID:31827337
大小:412.00 KB
页数:29页
时间:2019-01-20
《北京市东城区2015-2016学年八年级下期末数学试卷含答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2015-2016学年北京市东城区八年级(下)期末数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.下列四组线段中,可以构成直角三角形的是( )A.1,,B.2,3,4C.1,2,3D.4,5,62.某地需要开辟一条隧道,隧道AB的长度无法直接测量.如图所示,在地面上取一点C,使点C均可直接到达A,B两点,测量找到AC和BC的中点D,E,测得DE的长为1100m,则隧道AB的长度为( )A.3300mB.2200mC.1100mD.550m3.平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是( )A.45°B.6
2、0°C.90°D.120°4.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差5.一次函数y=﹣x+1的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限6.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为( )A.2B.3C.4D.87.已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )A.36B.30C.24D.208.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足(
3、 )第29页(共29页)A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠59.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )A.x≥B.x≤3C.x≤D.x≥310.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,大小正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D. 二、填空题:(本题共24分,每小题3分)11.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式) .12.甲乙两人8次射击的成
4、绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是 (填“甲”或“乙”)第29页(共29页)13.方程x2﹣2x=0的根是 .14.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF= cm.15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问
5、这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为 .16.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是 .第29页(共29页)17.如图,沿折痕AE折叠矩形ABCD的一边,使点D落在BC边上一点F处.若AB=8,且△ABF的面积为24,则EC的长为 .18.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC
6、边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是 . 三、解方程:(本题共8分,每小题8分)19.解方程:(1)2x2﹣3x+1=0.(2)x2﹣8x+1=0.(用配方法) 四、解答题:(本题共18分,21-22每小题4分,23-24每小题4分)20.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数.(如下表)每人加工零件数544530242112第29页(共29页)人数112632(1)写出这15人该月加工零件数的
7、平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?为什么?如果不合理,请你设计一个较为合理的生产定额,并说明理由.21.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.22.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:四边形AEC
此文档下载收益归作者所有