《两角差余弦公式》教案设计

《两角差余弦公式》教案设计

ID:31819243

大小:87.96 KB

页数:5页

时间:2019-01-18

《两角差余弦公式》教案设计_第1页
《两角差余弦公式》教案设计_第2页
《两角差余弦公式》教案设计_第3页
《两角差余弦公式》教案设计_第4页
《两角差余弦公式》教案设计_第5页
资源描述:

《《两角差余弦公式》教案设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高一数学必修4第三章第1节《两角差的余弦公式》教案作者:何源麟一、教材分析本小节教材以本章开头的电视塔为实际问题引出关于两角角和、差的三角函数值的计算,首先从差角余弦公式开始,引用第一章中借助单位圆探究三角函数的想法,在单位圆中建立两角差,并寻找它的余弦线,用数形结合的方式探究两角茅的余弦公式,然后,又应用刚刚学习的向量知识探究任意角的两角差的余弦公式,让同学们体会向量的在数学其他领域上的作用,最后以两个例题的求解过程展现两角差的余弦公式的实际应用价值。二、教学目标1.知识与技能(1)掌握运用单位圆上三角函数基本

2、知识和向量知识推出两角差的余弦公式的探索过程。(2)了解两角差的余弦公式的意义,并能应用与简单计算。2.过程与方法(1)通过参与运用向量知识和三角函数基本知识推出差角余弦公式的过程,进一步理解函数与向量的内在联系。(2)通过运用两角差的余弦公式技巧性的计算常见角度的余弦值,理解两角差的余弦公式在实际问题中的应用广度,为学习其余三角函数公式打下根基。3•情感态度与价值观经过本节课的学习,对该公式有个全而透彻的了解,进一步感受三角函数与其他函数的区别,并通过实例,体会三角函数的应用价值。三、教学重难点1.教学重点:差

3、角余弦公式在实例运算中的应用。2.教学难点:差角余弦公式的推导过程与方法。四、教学过程(一)导入新课问题我们已经学习了cos60。=占cos30°=—,cos45°=—,222但没有学习其他角的余弦值,比如:cos15°,COS75。那么,我们能否用学过的60。,30°,45。的余弦、正弦去表示cos15。,cos75°呢?通过学生自主探究,板书cos15°=cos(60°-45°),cos75°=cos(120°-45°)o大家很容易认为cos(60°一45°)=cos60°一cos45°容易验证得cos60°

4、-cos45°<0,cos(60°-45°)>0所以cos(60°—45°)Hcos60°—cos45°那么,我们一起来学习两的差的余弦cos(a—B丿等于什么?(二)新课教学问题2:在第一章的学习中,我们用直角坐标系上的单位圆探究了三角函数,那么对于这个a-p的余弦的问题,我们能否也可以用单位圆来探索呢?这个问题无非就是在单位圆中建立角0,那我们该如何建立?请小组讨论一下。总结学生讨论结果写出建立过程:如图,设角CG卩€(0,90。),且a>令角a的终边与单位圆的交点为为Pi,ZPOPi=p则厶rOP=a-(i

5、・问题3:我们已经建立了角Q-0,下一步如何在单位圆中表示出cos(a—B)呢?学生经过一番思考之后板书演示:过点P作PM垂直于x轴,垂足为M,显然0M就是角a_B的余弦线.问题4:我们的最终目的是用Q郦的正弦和余弦表示cos(a—B)现在我们已经用0M表示了角的余弦线,那我们能否用角0的正弦线、余弦线来表示0M呢?学生讨论之后经行讲解:过点P作PA垂直于OP】.垂足为A.过点A作AB垂直于x轴,垂足为B.过点P作PC垂直于AB垂足为C.那么0A表示cos0,AP表示sin伏并且ZPAC==a.于是0M=OB+B

6、M=OB+CP=OAcosa+APsina=cosacos0+sinasin/?回顾该公式推导过程,点明此时三个角都是锐角思考:对于任意的角a,/?,以上公式是否成立呢?下面我们用向量的知识经行探究:如图,在平面直角坐标系咒0妙内作单位圆0,以0允为始边作角a,0•它们的终边与单位圆0的交点分别为A,Bo则向量0A=(cosa/sina),OB=(cos/sin/?)由向量数量积的坐标表示,有芮・~0B=(cosa/sina)•(cos0,sin/?)=cosacos0+sinasin0而又有丽•而=A-

7、

8、0B

9、-cos6>,由图可知a—0=0±2kmkGZ,贝!Jcos(a_B)=cosacos/?+sinasin/?所以对于Pa,B,有cos(a_B)=cosacos/?+sinasin仔。该公式称之为两角差的余弦公式。(三)巩固提高1.例题讲解例利用差角余弦公式求cos15。的值。引导学生用两种解法求解.例2:已知sina=ae/兀),cos0=三,/?是第三象限的O乙丿丄a角,求cos(a—p丿.思考:本题为何要给出aeg,Ti)2.课堂练习运用今天学过的两角差的余弦公式计算下列各三角函数的值。。(1)

10、cos70°cos10°+sin70°sin10°(2)cos105°(四)小节回顾现在学习了两角差的余弦公式,对于该公式的推导过程大家要熟练掌握;在给出一个余弦值函数,要灵活处理计算他的余弦值。五、作业布置1、请同学们自主推导两角差的余弦公示2、思考如何根据两角差的余弦公式得出两角和差的正弦、正切,两角和的余弦?六、教学反思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。