欢迎来到天天文库
浏览记录
ID:31805229
大小:59.00 KB
页数:4页
时间:2019-01-18
《6.2.2 定义与命题.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第三课时●课题§6.2.2定义与命题(二)●教学目标(一)教学知识点1.命题的组成:条件和结论.2.命题的真假.3.了解数学史.(二)能力训练要求1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.(三)情感与价值观要求1.通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.2.通过了解数学知识,拓展学生的视野,从而
2、激发学生学习的兴趣.●教学重点找出命题的条件(题设)和结论.●教学难点找出命题的条件和结论.●教学方法讲练相结合法.●教具准备投影片四张第一张:想一想(记作投影片§6.2.2A)第二张:做一做(记作投影片§6.2.2B)第三张:想一想(记作投影片§6.2.2C)第四张:公理(记作投影片§6.2.2D)●教学过程Ⅰ.巧设现实情境,引入课题[师]上节课我们研究了命题,那么什么叫命题呢?[生]判断一件事情的句子,叫做命题.[师]好.下面大家来想一想:(出示投影片§6.2.2A)观察下列命题,你能发现这些命题有什么共同的结构特征?(
3、1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(4)如果一个四边形的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.[师]大家观察后,分组讨论.[生甲]这五个命题都是用“如果……,那么……”的形式叙述的.[生乙]每个命题都是由已知得到结论.[生丙]这五个命题的每个命题都有条件和结论.[师]很好.这节课我们继续来研究命题.Ⅱ.讲授新课
4、[师]大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可
5、以将它们改写成“如果……,那么……”的形式.如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.下面我们来做一做(出示投影片§6.2.2B)1.下列各命题的条件是什么?结论是什么?(1)如果两个角相等,那么它们是对顶角;(2)如果a>b,b>c,那么a=c;(3)两角和其中一角的对边对应相等的两个三角形全等;(4)菱形的四条边都相等;(5)全等三角形的面积相等
6、.[生甲]第一个命题的条件是:两个角相等,结论是:它们是对顶角.[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.[生戊]丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.[生己]第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.
7、则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.[师]同学们分析得很好.能够经过分析,准确地找出命题的条件和结论.接下来我们来思考(出示投影片§6.2.2B)2.上述命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?[师]大家思考后,来分组讨论.[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.图6-10[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.所以第一个命题:如果两个角相等,那么它们是对顶角是错误的.[生丙]第
8、二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.[师]很好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(truestatement),不正确的命题称为假命题(falsestatement).由大家刚才分
此文档下载收益归作者所有