欢迎来到天天文库
浏览记录
ID:31736006
大小:4.77 MB
页数:9页
时间:2019-01-17
《2013年秋北师大版必修1示范教案2.3函数的单调性.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、§3 函数的单调性教学分析 在研究函数的性质时,单调性是一个重要内容.实际上,在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图像得出.而本节内容,正是初中有关内容的深化和提高.给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图像上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法,最好根据图像观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了.由
2、于函数图像是发现函数性质的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生作函数图像,有更多的时间用于思考、探究函数的单调性.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性的理解.三维目标 1.函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图像理解和研究函数的性质.2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力.3.能够用函数的性质解决日常生活
3、中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性.重点难点 教学重点:函数的单调性.教学难点:增函数、减函数形式化定义的形成.课时安排 1课时导入新课 德国有一位著名的心理学家名叫艾宾浩斯(HermannEbbinghaus,1850—1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的同样的标准.他经过对自己的测试,得到了一些数据.时间间隔t0分钟20分钟60分钟8~9小时1天2天
4、6天一个月记忆量y(百分比)100%58.2%44.2%35.8%33.7%27.8%25.4%21.1%观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图像的草图(这就是著名的艾宾浩斯曲线).从左向右看,图像是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(可以借助信息技术画图像)学生:先思考或讨论,回答:记忆量y随时间间隔t的增大而增大;以时间间隔t为横轴,以记忆量y为纵轴建立平面直角坐标系,描点连
5、线得函数的草图——艾宾浩斯遗忘曲线如图1所示.图1遗忘曲线是一条衰减曲线,它表明了遗忘的规律.随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆.教师提示、点拨,并引出本节课题.推进新课 ①如图2所示的是一次函数y=x,二次函数y=x2和y=-x2的图像,它们的图像有什么变化规律?这反映了相应的函数值的哪些变化规律?图2②函数图像上任意点P(x,y)的坐标有什么意义?③如何理解图像是上升的?④对于二次函数y=x2,列出x,y的对应值表(如下表).完成下表并体会图像
6、在y轴右侧上升.x…-4-3-2-101234…f(x)=x2……⑤在数学上规定:函数y=x2在区间(0,+∞)上是增函数.谁能给出增函数的定义?⑥增函数的定义中,把“当x1<x2时,都有f(x1)<f(x2)”改为“当x1>x2时,都有f(x1)>f(x2)”,这样行吗?⑦增函数的定义中,“当x1<x2时,都有f(x1)<f(x2)”反映了函数值有什么变化趋势?⑧增函数的几何意义是什么?⑨类比增函数的定义,请给出减函数的定义及其几何意义?⑩函数y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图像有什么变化趋势?讨论结果:
7、①函数y=x的图像,从左向右看是上升的;函数y=x2的图像在y轴左侧是下降的,在y轴右侧是上升的;函数y=-x2的图像在y轴左侧是上升的,在y轴右侧是下降的.②函数图像上任意点P的坐标(x,y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.③按从左向右的方向看函数的图像,意味着图像上点的横坐标逐渐增大即函数的自变量逐渐增大.图像是上升的意味着图像上点的纵坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图像上升,反映了函数值随着自变量的增大而增大.④在区间(0,+∞)上,任取x1,x2,且x1<x2,
8、那么就有y1<y2,也就是有f(x1)<f(x2).这样可以体会用数学符号来刻画图像上升.⑤一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意
此文档下载收益归作者所有