欢迎来到天天文库
浏览记录
ID:31729770
大小:318.50 KB
页数:15页
时间:2019-01-17
《20.3矩形 菱形 正方形教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、20.3矩形、菱形、正方形《矩形》一、教材分析:(一)教材的地位和作用:本课要研究的是矩形的概念及性质和判定,是在学生已经学过四边形、平行四边形的概念及性质和判定的基础上进行的,是这一章的重点内容之一。因为矩形是特殊的平行四边形,而后继课要学的正方形又是特殊的矩形,所以它既是前面所学知识的应用,又是后面学习正方形的基础,具有承上启下的作用。另外,本节课的内容还渗透着转化、对比的数学思想,重在训练学生的逻辑思维能力和分析、归纳、总结的能力,因此,这节课无论在知识上,还是在对学生能力培养上都起着非常重要的作
2、用。(二)教学目标:在学生已有的认知基础上,依据课程标准,结合本课在教材中的地位、作用,确定本节课的教学目标为:1、知识目标:(1)知道什么是矩形(2)理解矩形与平行四边形的关系(3)能说出矩形的性质及推论(4)掌握矩形的判定方法(5)能综合运用矩形的知识解决有关问题2、能力目标:(1)会运用矩形的性质及推论进行有关的论证和计算(2)会运用矩形的判定定理解决有关问题(2)会观察、会比较、会分析、会归纳3、德育目标:初步具有把感性认识上升到理性认识的辩证唯物主义观点。4、情感目标:养成有良好的学习习惯,有
3、浓厚的学习兴趣。(三)、教学重点、难点、关键及依据:重点:矩形的概念、性质和判定定理难点:矩形与平行四边形的关系第15页共15页关键:加强概念教学是突破难点的关键依据:本课在教材中的地位和作用及教学目标和学生的实际情况。二、教学方法和手段:(一)教学方法:根据本课的内容和初二学生的特点以及目标教学的要求,采用边启发、边分析、边推理,层层设疑,讲练结合的要求。通过演示平行四边形模型,激发学生的学习兴趣。教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师
4、为主导,学生为主体,得到充分体现。学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”使能力得到锻炼。(二)教学手段:为提高课堂效率和质量,借助于多媒体信息技术进行教学。(三)教具:三角板,平行四边形模型,多媒体教学设备。三、教材处理:(一)学生状况分析:1、知识方面:学生已掌握了四边形及平行四边形的概念、性质等知识。2、方法方面:学生已积累了学习特殊四边形性质的方法,即按“角、边、对角线”的思路进行学习。3、思维方面:学生的思维还依赖于具体、形象、易
5、模仿的特点,因此逻辑思维能力需要加强。4、对策:(1)注意问题情境的教学。(2)使用启发诱导的方法。(3)贯彻循序渐进的原则。(二)教材处理:基本按照教材的意图讲授,适当补充练习四、教学过程及设计:第一课时(一)用运动方式探索矩形的概念及性质1.复习平行四边形的有关概念及边、角、对角线方面的性质.2.复习平行四边形和四边形的关系.3.用教具演示如图,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.第15页共15页分析:(1)矩形的形成过程是平行四边形的一个角由量变到质变的变化
6、过程.(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的平行四边形是矩形”来定义矩形.(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性).(4)从边、角、对角线方面,让学生观察或度量猜想矩形的特殊性质. ①边:对边与平行四边形性质相同,邻边互相垂直(与性质定理1等价). ②角:四个角是直角(性质定理1). ③对角钱:相等且互相平分(性质定理2).4.证明矩形的两条性质定理及推论. 引导学生利用矩形与平行四边形的从属关系、
7、矩形的概念以及全等三角形的知识,规范证明两条性质定理及推论.指出:推论叙述了直角三角形中线段的倍分关系,是直角三角形很重要的一条性质.(二)应用举例例1已知:如下图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及A到BD的距离AE的长.分析:(1)矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,在此可以让学生作一个系统的复习,在直角三角形中,斜边大于直角边边:勾股定理斜边中线等于斜边的一半角:两锐角互余.第15页共15页边角关系:30°角所对的直角边等于斜边的一半。(2
8、)利用方程的思想,解决直角三角形中的计算。设AD=xcm,则对角线长(x+4)cm,由题意,x2+82=(x+4)2.解得x=6.(3)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式:AE×DB=AD×AB,解得AE=4.8cm.例2如图(a),在矩形ABCD中,两条对角线交于点O,∠AOD=120°,AB=4.求:(1)矩形对角线长;(2)BC边的长;(3)若过O垂直于BD的直线交A
此文档下载收益归作者所有