欢迎来到天天文库
浏览记录
ID:31655912
大小:134.00 KB
页数:4页
时间:2019-01-16
《2018北师大版数学八年级下册1.2.2《直角三角形全等的判定》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第2课时直角三角形全等的判定【知识与技能】能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感【情感态度】进一步掌握推理证明的方法,发展演绎推理能力【教学重点】能够证明直角三角形全等的“HL”的判定定理【教学难点】进一步理解证明的必要性.一.情景导入,初步认知1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形.想一想,怎么画?同学们相互交流.3.有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角
2、呢?请证明你的结论.【教学说明】教师顺水推舟,询问能否证明:“斜边和一条直角边分别相等的两个直角三角形全等”,从而引入新课二.思考探究,获取新知探究:“HL”定理.已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′.求证:Rt△ABC≌Rt△A′B′C证明:在Rt△ABC中,AC2=AB2一BC2(勾股定理).又∵在Rt△A'B'C'中,A'C'2=A'B'2一B'C'2(勾股定理).∴AB=A'B',BC=B'C',AC=A'C'.∴Rt△ABC≌Rt△A'B'C'(SSS).【归纳结论】斜
3、边和一条直角边对应相等的两个直角三角形全等.(这一定理可以简单地用“斜边、直角边”或“HL”表示.)w【教学说明】讲解学生的板演,借此进一步规范学生的书写和表达.分析命题的条件,既然其中一边和它所对的直角对应相等,那么可以把这两个因素总结为直角三角形的斜边对应相等,于是直角三角形有自己的全等判定定理.三.运用新知,深化理解1.见教材P20例题2.填空:如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°.(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是AAS.(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DE
4、F的依据是ASA.(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是AAS.(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是HL.(5)若AC=DF,CB=FE,则Rt△ABC≌Rt△DEF的依据是SAS.3.已知:Rt△ABC和Rt△A'B'C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线,且BD=B'D'.求证:Rt△ABC≌Rt△A'B'C'.证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B'D'C'(
5、HL定理).∴CD=C'D'.又∵AC=2CD,A'C'=2C'D',∴AC=A'C'.∴在Rt△ABC和Rt△A'B'C'中,∵BC=B'C',∠C=∠C'=90°,AC=A'C',∴Rt△ABC≌Rt△A'B'C(SAS).4.如图,已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来,并证明解:AC=DB.∵AC=DB,AB=BA,∴△ACB≌△BDA(HL)其他条件:CB=DA或四边形ACBD是平行四边形等.证明略.【教学说明】这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理
6、,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案5.如图,在△ABC与△A'B'C'中,CD、C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.求证:△ABC≌△A'B'C'分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求∠B=∠B',这样就可用AAS;还可寻求BC=B'C',那么就可根据SAS……注意到题目中有CD、C'D'是三角形的高,CD=C'D'.观察
7、图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证得Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A'就可行.2·1·c·n·j·y证明:∵CD、C'D'分别是△ABC、△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°.在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D'(已知),∴Rt△ADC≌Rt△A'D'C'(HL).∠A=∠A',(全等三角形的对应角相等).在△ABC和△A'B'C'中,∠A=∠A'(已证),AC=A'C'(已知),∠ACB=∠A'C'B'(已知),∴△
8、ABC≌△A'B'C'(ASA).【教学说明】通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结.四.师生互动,课堂小结直角三角形的判定方法有五种,注意“HL”仅适用于
此文档下载收益归作者所有