欢迎来到天天文库
浏览记录
ID:31603960
大小:2.72 MB
页数:28页
时间:2019-01-15
《2014秋青岛版数学九上第1章《图形的相似》word全章学案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、九年级上册数学第1章图形的相似1.1相似多边形学习目标:1、了解相似形、相似多边形的有关概念和性质.2、能举例说明相似形.能准确的用“∽”符号表示相似多边形的相似及对应关系.3.能说出相似三角形的相似比,能根据相似比求长度,培养学生的运用能力。重点:深刻理解和掌握相似多边形的对应点、对应角、对应边以及表示方式.难点:找对应边及对应角。根据定义求线段长和角度。复习旧知: 1.什么叫做全等三角形?它在形状上、大小上有何特征?2.两个全等三角形的对应边和对应角有什么关系?预习效果反馈:下面是中华人民共和国国旗,上有五颗
2、五角星,它们形状相同吗?大小相等吗?在现实生活中,你还见过形状相同,但大小未必相等的图形吗?探究新知:1.情境引入(1)、从08奥运会游泳馆水立方和自由体操场地中抽象出的两个正方形形状相同吗?ABCDA1B1C1D1两个正方形边、角之间的关系如下:角:______________________________________________________;边:______________________________________________________; (2)①以上两个五
3、边形相似吗?利用直尺和量角器想法说明它们是否相似.②如果两个多边形相似,那么它们的对应角有什么关系?对应边呢?2.生成概念定义:叫相似形定义:—————————————————————————————————————————————叫做相似多边形.记法:————————————————————————————————————————.③————————————————————————————————叫做相似比.④相似多边形的性质:如果两个多边形相似,那么它们的对应角————————————,对应边—————⑤相似
4、多边形面积的比等于.3、议一议:①观察下面两组图形,图中的两个图形相似吗?为什么? ②图中的两个图形相似吗?为什么?③如果两个多边形不相似,那么它们的对应角可能都相等吗?对应边可能都成比例吗?④你能说出全等形与相似形的关系吗?⑤如何表示多边形相似?记两个多边形相似时,应注意什么?(三)深化概念1.填空:如图所示的两个矩形相似,它们的相似比是—————,A1D1=————.ABCDA1B1C1D12432、判断正误(错误的请举例说明):1.两个等边三角形一定相似. ()2.两个全等多边形一定相似.()3.各边对
5、应成比例的两个四边形一定相似. ()4.各角对应相等的两个四边形一定相似. ()(四)精讲例题1、如图,矩形的草坪长20m,宽10m,沿草坪四周外围有1m的环行小路,小路的内外边缘所成的矩形相似吗?为什么?(五)当堂达标检测1、两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A.B.C.D.2.在矩形ABCD中,E,F分别为AB,CD的中点,如果矩形ABCD∽矩形EFCB,那么它们的相似比为()A.B.C.2D.3、一个多边形的边长为2,3,4,5,6,另一个和它相似的多边形的最长边
6、为24,则这个多边形的最短边长为()A.6B.8C.12D.104.如图,两个正六边形的边长分别为a和b,它们相似吗?为什么?5.如图所示的相似四边形中,你还能求哪些边和角?试试看.FCEGHBDA790162047117032337706、E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD∽矩形EABF,AB=1,求矩形ABCD的面积.7、梯形ABCD中,AD∥BC,E,F分别为AB,CD上一点,且梯形AEFD∽梯形EBCF,若AD=4,、BC=9.试求AE:EB的值.8、对应角相等的两个多边形一定是
7、相似多边形吗?两个多边形的对应边的比值都相等,这样的两个多边形也是相似多边形吗?试分别举例说明.六:课堂总结,提高认识本节收获:本节不足:教后感:1.2怎样判定三角形相似(1)学习目标知识与技能:1、初步掌握相似三角形的判定定理(1),并且能够运用它们进行简单的证明及计算2、通过习题的引申练习,培养学生解决问题的能力3、渗透图形运动的思想,培养学生思维能力过程与方法:经历相似三角形与全等三角形的类比过程,进一步体验类比思想、特殊与一般的辨证思想情感态度与价值观:积极参与数学活动,体验数学活动充满探索与创造,形成实
8、事求是的态度及独立思考的习惯教学过程一、新课讲解:从图(1)可知,当AD∥BE∥CF,且AB=BC时,则DE=EF,也就是接着象教材一样,说明时,也有为有理数时,上面的结论也成立。为无理数时,上面的结论也成立。综上可得两条直线被一组平行线所截,所得的对应线段成比例.说明:(1)画出定理的各种基本图形,对照图形写出相应的结论。(2)写出其它的对应线段成比例的情况。对应线段成
此文档下载收益归作者所有