微积分下学期末试卷及答案

微积分下学期末试卷及答案

ID:31582519

大小:960.02 KB

页数:25页

时间:2019-01-14

微积分下学期末试卷及答案_第1页
微积分下学期末试卷及答案_第2页
微积分下学期末试卷及答案_第3页
微积分下学期末试卷及答案_第4页
微积分下学期末试卷及答案_第5页
资源描述:

《微积分下学期末试卷及答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、微积分下期末试题(一)一、填空题(每小题3分,共15分)1、已知,则_____________.2、已知,则___________.3、函数在点取得极值.4、已知,则__1______.5、以(为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分6知与均收敛,则常数的取值范围是(  C ).(A)(B)(C)(D)7数在原点间断,是因为该函数( B ).(A)在原点无定义(B)在原点二重极限不存在(C)在原点有二重极限,但无定义(D)在原点二重极限存在,但不等于函数值第25页共25页8、若,,,则下列关系式成立的是(  A).(

2、A)(B)(C)(D)9、方程具有特解(  D).(A)(B)(C)(D)10、设收敛,则(  D).(A)绝对收敛(B)条件收敛(C)发散(D)不定11、求由,,所围图形绕轴旋转的旋转体的体积.解:的函数为。且时,。于是第25页共25页12、求二重极限.解:原式(3分)(6分)13、由确定,求. 解:设,则,,,(3分)(6分)14、用拉格朗日乘数法求在条件下的极值. 解:令,得,,为极小值点.(3分)故在下的极小值点为,极小值为(6分)第25页共25页15、计算.解:(6分)16、计算二重积分,其中是由轴及圆周所围成的在第一象限内的区域.解:==(6分)17、解微分方程.解:

3、令,,方程化为,于是(3分)(6分)18、判别级数的敛散性.解:(3分)因为第25页共25页19、将函数展开成的幂级数,并求展开式成立的区间.解:由于,已知,,(3分)那么,.(6分20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入(万元)与电台广告费用(万元)的及报纸广告费用(万元)之间的关系有如下的经验公式:,求最优广告策略解:公司利润为令即得驻点,而(3分),,,,所以最优广告策略为:电台广告费用(万元),报纸广告费用(万元).(6分)第25页共25页四、证明题(每小题5分,共10分)21、设,证明:.证:22、若与都收敛,则收敛.证:由于,(3

4、分)并由题设知与都收敛,则收敛,从而收敛。(6分)第25页共25页微积分下期末试题(二)一、填空题(每小题3分,共15分)1、设,且当时,,则。答案()2、计算广义积分=。答案()3、设,则。答案()4、微分方程具有形式的特解.答案()5、设,则_________。答案(1)二、选择题(每小题3分,共15分)1、的值为(A)A.3B.0C.2D.不存在2、和存在是函数在点可微的(A)。A.必要非充分的条件;B.充分非必要的条件;C.充分且必要的条件;D.即非充分又非必要的条件。3、由曲面和及柱面所围的体积是(D )。  A.;B.;  C、;D.第25页共25页4、设二阶常系数非

5、齐次线性方程有三个特解,,,则其通解为(C)。A.;B.;C.;D.5、无穷级数(为任意实数)(D)A、收敛B、绝对收敛C、发散D、无法判断三、计算题(每小题6分,共60分)1、求下列极限:。解:…(3分)…(6分)2、求由与直线、、所围图形绕轴旋转的旋转体的体积。解:…(4分)…(6分)3、求由所确定的隐函数的偏导数。解:方程两边对求导得:,有…(3分)第25页共25页方程两边对求导得:,有…(6分)4、求函数的极值。解:,则,,,,求驻点,解方程组得和.…(2分)对有,,,于是,所以是函数的极大值点,且…(4分)对有,,,于是,不是函数的极值点。6、计算积分,其中是由直线及所

6、围成的闭区域;解:.…(4分)…(6分)7、已知连续函数满足,且,求。解:关系式两端关于求导得:第25页共25页即…(2分)这是关于的一阶线性微分方程,其通解为:=…(5分)又,即,故,所以…(6分)8、求解微分方程=0。解:令,则,于是原方程可化为:…(3分)即,其通解为…(5分)即故原方程通解为:…(6分)9、求级数的收敛区间。解:令,幂级数变形为,.…(3分)当时,级数为收敛;第25页共25页当时,级数为发散.故的收敛区间是,…(5分)那么的收敛区间为.…(6分)10、判定级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛。解:因为…(2分)由比值判别法知收敛(),

7、…(4分)从而由比较判别法知收敛,所以级数绝对收敛.…(6分)四、证明题(每小题5分,共10分)1、设正项级数收敛,证明级数也收敛。证:,…(3分)而由已知收敛,故由比较原则,也收敛。…(5分)2、设,其中为可导函数,证明.第25页共25页证明:因为,…(2分)…(4分)所以.…(5分)微积分下期末试题(三)一、填空题(每小题3分,共15分)1、设,且当时,,则。答案()2、计算广义积分=。答案()3、设,则。答案()4、微分方程具有形式的特解.()5、级数的和为。答案()二、选

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。