欢迎来到天天文库
浏览记录
ID:31481376
大小:312.00 KB
页数:10页
时间:2019-01-11
《高中数学 第三章 空间向量与立体几何 3_2_2 空间线面关系的判定(二)学案 苏教版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散3.2.2 空间线面关系的判定(二)学习目标 1.能用向量法判断一些简单的线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l1的方向向量为μ1=(1,3,2),直线l2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法
2、判断两条直线垂直的一般方法是什么? 梳理 设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3),则l⊥m⇔________⇔________.知识点二 向量法判断线面垂直思考 若直线l的方向向量为μ1=,平面α的法向量为μ2=,则直线l与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?梳理 设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔________.知识点三 向量法判断面面垂直思考 平面α,β的法
3、向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z2),用向量坐标法表示两平面α,β垂直的关系式是什么?经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散梳理 若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为ν=(a2,b2,c2),
4、则α⊥β⇔μ⊥ν⇔μ·ν=0⇔________________.类型一 证明线线垂直例1 已知正三棱柱ABC-A1B1C1的各棱长都为1,M是底面上BC边的中点,N是侧棱CC1上的点,且CN=CC1.求证:AB1⊥MN.反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,求证:AC⊥BC1.类型二 证明线面垂直例2 如图所示,正三棱柱ABC-A1B
5、1C1的所有棱长都为2,D为CC1的中点.经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散求证:AB1⊥平面A1BD.反思与感悟 用坐标法证明线面垂直的方法及步骤方法一:(1)建立空间直角坐标系.(2)将直线的方向向量用坐标表示.(3)找出平面内两条相交
6、直线,并用坐标表示它们的方向向量.(4)分别计算两组向量的数量积,得到数量积为0.方法二:(1)建立空间直角坐标系.(2)将直线的方向向量用坐标表示.(3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证:直线PB1⊥平面PAC.类型三 证明面面垂直例3 在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥BC,AB=BC=2,AA1=1,E为BB1的中点,求证:平面AEC1⊥平面
7、AA1C1C.经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 如图,底面ABCD是正方形,AS⊥
8、平面ABCD,且AS=AB,E是SC的中点.求证:平面BDE⊥平面ABCD.1.有如下四个命题①若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥β;②若n1,n2分别是平面α,β的法向量,则α⊥β⇔n1·n2=0;③若n是平面α的法向量,a与平面α平行,则n·a=0;④若两个平面的法向量不垂直,则这两个平面不垂直.其中为真命题的是________.2.若直线l1的方向向量为a=(2,-4,4),l2的方向
此文档下载收益归作者所有