高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41

高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41

ID:31459888

大小:388.00 KB

页数:4页

时间:2019-01-10

高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41_第1页
高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41_第2页
高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41_第3页
高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41_第4页
资源描述:

《高中数学 2_2_2 向量的减法互动课堂学案 苏教版必修41》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求高中数学2.2.2向量的减法互动课堂学案苏教版必修4疏导引导1.向量减法的定义(1)向量的减法实际上是加法的逆运算,已知向量a、b,(如右图)作=a,=b,则b+=a,向量叫做向量a与b的差,记作a-b,即=a-b=-.疑难疏引①如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.②一个向量等于它的终点,相对于点O的位置

2、向量减去它的始点相对于点O的位置向量,或简记为“终点向量减起点向量”,这里的点O是任意的一点.(2)相反向量的定义与向量a方向相反且等长的向量叫作a的相反向量,记作-a.关于相反向量的结论有:①0的相反向量仍为0;②a+(-a)=(-a)+a=0;③-(-a)=a;④一个向量与它的相反向量是共线向量;⑤

3、a

4、=

5、-a

6、.(3)利用相反向量定义向量的减法在向量减法的定义中,b+=a.在上式中两边同时加上(-b),则=a+(-b).即说明一个向量减去另一个向量等于加上这个向量的相反向量.a+(-b)通常省略加号.就是

7、a-b.其实向量的差也就是向量的和.2.两个向量差的几何作法(1)两个向量的差也可由平行四边形法则和三角形法则求得.用平行四边形法则时,两个已知向量也是共同的起点,和向量是始点与它们重合的那条对角线,而差向量是另外一条对角线,方向是从减向量指向被减向量;用三角形法则时,把减向量与被减向量的始点重合,则差向量是从减向量的终点指向被减向量的终点,可以简记为“连终点,方向指向被减”.(2)可以将两向量的差转化为求被减向量与减向量相反向量的和来求,即a-b=a+(-b),再用向量求和的三角形法则或平行四边形法则来求.3.

8、两个重要的结论(1)以向量=a,=b为邻边作平行四边形AB,则两条对角线的向量为=a+b,=b-a,=a-b.(2)

9、

10、a

11、-

12、b

13、

14、≤

15、a±b

16、≤

17、a

18、+

19、b

20、案例已知两向量a、b,求证:若

21、a+b

22、=

23、a-b

24、,则a的方向与b的方向垂直;反之也成立.【探究】要证明a的方向与b方向垂直,只需证明以a、b配合各任课老师,激发学生的学习兴趣,挖掘他们的学习动力,在学生中培养苦学精神,发扬拼搏精神,形成以勤学为荣的班风;充分利用学校开展的“不比基础比进步,不比聪明比勤奋”以及具有储能特色的“当月之星”的评选活动,积极

25、探索素质教育的新途径在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求为邻边的平行四边形为矩形,即证两对角线长度相等即可.【证明】①若

26、a+b

27、=

28、a-b

29、,设=a,=b,以、为邻边作平行四边形,则

30、a+b

31、=

32、

33、,

34、a-b

35、=

36、

37、,又

38、a+b

39、=

40、a-b

41、,∴

42、

43、=

44、

45、,即平行四边形OACB的对角线相等,∴平形四边形OACB为矩形,∴a与b的方向垂直.②若a与b的方向垂直,如右图所示,设=a,=b,以、为邻边的平

46、行四边形为矩形.∴

47、

48、=

49、

50、,而=a+b,=a-b,∴

51、a+b

52、=

53、a-b

54、.规律总结此题的证明关键利用了两个向量和与差的几何意义,同时指出了平行四边形两对角线向量分别是邻边向量的和与差,本题求证的结论非常重要,应领会其实质.活学巧用【例1】如右图所示,O是平行四边形ABCD的对角线、的交点,设=a,=b,=c,试证明:b+c-a=.分析:要证b+c-a=,可转化为证明b+c=+a,从而利用向量求和证明.也可从c-a入手,利用向量的减法证明.证法一:因为b+c=+=+=,+a=+=OB.所以b+c=+a,即b+c

55、-a=.证法二:因为c-a=-=-=+=,而=+=-b.所以c-a=-b,即b+c-a=.【例2】化简下列各式:配合各任课老师,激发学生的学习兴趣,挖掘他们的学习动力,在学生中培养苦学精神,发扬拼搏精神,形成以勤学为荣的班风;充分利用学校开展的“不比基础比进步,不比聪明比勤奋”以及具有储能特色的“当月之星”的评选活动,积极探索素质教育的新途径在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求(1)-+--;(2)(

56、-)-(-);(3).分析:本题是向量加减法的混合运算,应注意起点相同的两向量的差等于以减向量的终点为起点,被减向量的终点为终点的向量,并且注意相反向量的使用.解:(1)-+--=--(+)=-0=.(2)(-)-(-)=(-)+-=++=+=0.(3)【例3】如右图,已知a、b,求作a-b.作法一:在平面内任取一点O,作=a,=b,则=-=a-b.(如图甲)本作法是按向

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。