robust admissible analyse of uncertain singular systems via delta operator method

robust admissible analyse of uncertain singular systems via delta operator method

ID:31365826

大小:119.50 KB

页数:9页

时间:2019-01-09

robust admissible analyse of uncertain singular systems via delta operator method_第1页
robust admissible analyse of uncertain singular systems via delta operator method_第2页
robust admissible analyse of uncertain singular systems via delta operator method_第3页
robust admissible analyse of uncertain singular systems via delta operator method_第4页
robust admissible analyse of uncertain singular systems via delta operator method_第5页
资源描述:

《robust admissible analyse of uncertain singular systems via delta operator method》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RobustAdmissibleAnalyseofUncertainSingularSystemsviaDeltaOperatorMethod  【Abstract】Thispaperinvestigatestheproblemofrobustadmissibleanalysisforuncertainsingulardeltaoperatorsystems(SDOSs).Firstly,weintroducethedefinitionofgeneralizedquadraticadmissib

2、ilitytoensurerobustadmissibility.Then,bymeansofLMI,anecessaryandsufficientconditionisgiventoproveauncertainSDOSisgeneralizedquadraticadmissible.Finally,anumericalexampleisprovidedtodemonstratetheeffectivenessoftheresultsinthispaper.  【Keywords】SDOSs;

3、Robustadmissibility;LMI  0 Introduction  Singularsystemwasproposedinthe1970s[1].Ithasirreplaceableadvantagesovernormalsystem[2].Whennormalsystemmodeldescribespracticalsystem,itrequiressystemiscircular.Thereisoutputderivativeexistingininversesystem,an

4、ditcausesnormalsystemisnotcircular.Singularsystemsdonothavethisdrawback.Anycontrolsystemshaveuncertainfactor[3].Adeltaoperatormethodwaspresentedinthe1980sbyGoodwinandMiddleton[4].Afterthat,wehaveobtainedalotoftheoretical9achievements.Wecanobtaindelta

5、operatorasfollows:  1 Preliminaries  Thesenotationsareputtouseinthispaper:Rnmeansn-dimensionalrealvectorsetsandRm×nmeansm×ndimensionalrealmatrixsets.TheidentitymatrixwithdimensionrisdenotedbyIr.MatrixQ>0(orQ<0)meansthatQispositiveandsymmetricdefinite

6、(ornegativedefinite).?姿(E,A)={?姿∈Cdet(?姿E-A)=0}.TherankofamatrixAisdenotedbyrank(A).Dint(b,r)istheinterioroftheregionwiththecenterat(b,0)andtheradiusequaltoIinthecomplexplane.Theshorthanddiag(S1,S2...Sq)meansthematrixisdiagonalmatrixwithmaindiagonalm

7、atrixbeingthematricesS1,S2...Sq.  ConsideringthebelowSDOSdescribedby:  E?啄x(tk)=A?啄x(tk)(1)  wheretkmeansthetimet=kh.Thesamplingperiodhsatisfyh>0.x(tk)∈Rnisthestate.E,A?啄∈Rn×nareknownconstantmatrices,and0<rank(E)=r<n.  Definition1[5]:If?姿(E,A?啄)?奂Din

8、t(-1/h,1/h),wecallthesystem(1)isstable.Ifdeg(det(?啄E-A?啄))=rank(E),wecallthesystem(1)iscausal.Ifdet(?啄E-A?啄)isnotidenticallyzero,wecallthesystem(1)isregular.Ifitisregular,causalandstab1e,wecallthesystem(1)iscausal.9  Consideringthebelowsingulardiscre

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。