资源描述:
《高考数学大一轮复习第九章平面解析几何9_6抛物线试题理北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。第九章平面解析几何9.6抛物线试题理北师大版1.抛物线的概念平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点FFFF离心率e=1准线方程x
2、=-x=y=-y=范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R开口方向向右向左向上向下【知识拓展】1.抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F的距离
3、PF
4、=x0+,也称为抛物线的焦半径.2.y2=ax的焦点坐标为,准线方程为x=-.3.设AB是过抛物线y2=2px(p>0)焦点F的弦,对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,
5、对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。若A(x1,y1),B(x2,y2),则(1)x1x2=,y1y2=-p2.(2)弦长
6、AB
7、=x1+x2+p=(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( × )(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点
8、坐标是(,0),准线方程是x=-.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB为抛物线y2=2px(p>0)的过焦点F(,0)的弦,若A(x1,y1),B(x2,y2),则x1x2=,y1y2=-p2,弦长
9、AB
10、=x1+x2+p.( √ )1.(2016·四川)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)答案 D解析 ∵对于抛物线y2=ax,其焦点坐标为,∴对于y2=4x,焦点坐标为(1,0).2.(2016·张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1
11、,y1),Q(x2,y2)两点,如果x1+x2=6,则
12、PQ
13、等于( )A.9B.8C.7D.6答案 B解析 抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意,可得
14、PQ
15、=
16、PF
17、+
18、QF
19、=x1+1+x2+1=x1+x2+2=8.对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的
20、少,指导、推进、检查还不到位。3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A.B.[-2,2]C.[-1,1]D.[-4,4]答案 C解析 Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________________.答案 y2
21、=-8x或x2=-y解析 设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.5.(2017·合肥月考)已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为________.答案 2解析 抛物线y2=2px(p>0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4.又因为抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2.
22、 题型一 抛物线的定义及应用例1 设P是抛物线y2=4x上的一个动点,若B(3,2),则
23、PB
24、+
25、PF
26、的