双基限时练20 (2)设计

双基限时练20 (2)设计

ID:31320456

大小:179.50 KB

页数:7页

时间:2019-01-08

双基限时练20 (2)设计_第1页
双基限时练20 (2)设计_第2页
双基限时练20 (2)设计_第3页
双基限时练20 (2)设计_第4页
双基限时练20 (2)设计_第5页
资源描述:

《双基限时练20 (2)设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、新课标A版·数学·必修5高中同步学习方略双基限时练(二十)1.目标函数z=3x-y,将其看作直线方程时,z的意义是(  )A.该直线的截距B.该直线的纵截距C.该直线的横截距D.该直线纵截距的相反数答案 D2.有5辆6吨的汽车,3辆4吨的汽车,要运送一批货物,完成这项运输任务的线性目标函数是(  )A.z=6x+4y      B.z=5x+3yC.z=x+yD.z=3x+5y答案 A3.已知目标函数z=2x+y,且变量x,y满足下列条件则(  )A.zmax=12,zmin=3B.zmax=12,无最小值C.zmin=3

2、,无最大值D.z既无最大值又无最小值解析 画出可行域,如图所示.7新课标A版·数学·必修5高中同步学习方略画直线l:2x+y=0,平移直线l,知z=2x+y既无最大值,又无最小值.答案 D4.给出平面可行域(如图),若使目标函数z=ax+y取最大值的最优解有无穷多个,则a=(  )A.B.C.4D.解析 由题意,知当直线y=-ax+z与直线AC重合时,最优解有无穷多个.∴-a==-,∴a=.答案 B5.设变量x,y满足约束条件:则z=x-3y的最小值为(  )A.-2B.-4C.-6D.-8解析 作出可行域.令z=0,则l

3、0:x-3y=0,平移l0,在点M(-2,2)处z取到最小值,最小值z=-2-3×2=-8.7新课标A版·数学·必修5高中同步学习方略答案 D6.点P(x,y)在直线4x+3y=0上,且x,y满足-14≤x-y≤7,则点P到坐标原点距离的取值范围是(  )A.[0,5] B.[0,10]C.[5,10]D.[5,15]解析 因x,y满足-14≤x-y≤7,则点P(x,y),在所确定的区域内,且原点也在这个区域内.又点P在直线4x+3y=0上,由解得A(-6,8).由解得B(3,-4).∴P到坐标原点的距离最小为0,又

4、OA

5、

6、=10,

7、BO

8、=5.因此最大值为10,故其取值范围是[0,10].如图所示.7新课标A版·数学·必修5高中同步学习方略答案 B7.若x,y满足则z=x+2y的最小值是________.解析 可行域如图.当直线x+2y=0平移经过点A(1,3)时,z有最小值7.答案 78.不等式组所确定的平面区域记为D.若点(x,y)是区域D上的点,则2x+y的最大值是________;若圆O:x2+y2=r2上的所有点都在区域D内,则圆O面积的最大值是________.解析 区域D如图所示.7新课标A版·数学·必修5高中同步学习方略令

9、z=2x+y可知,直线z=2x+y经过(4,6)时z最大,此时z=14;当圆O:x2+y2=r2和直线2x-y-2=0相切时半径最大,此时半径r=,面积S=π.答案 14 π9.当x,y满足约束条件(k为常数),且使z=x+3y取得最大值12时,k的值为________.解析 根据题意,要使z取得最大值12,直线2x+y+k=0与直线y=x的交点B必在第一象限,约束条件所在的平面区域为如图阴影部分所示的△ABO,直线x+3y=0的斜率为-,直线2x+y+k=0的斜率为-2,直线y=x的斜率为1,7新课标A版·数学·必修5高

10、中同步学习方略故目标函数在B点取得最大值12,所以-+3×=12,解得k=-9.答案 -910.已知x,y满足约束条件求的取值范围.解 作出不等式组表示的平面区域,如图所示.设k=,因为=表示平面区域内的点与点P(-1,-1)连线的斜率,由图可知kPA最小,kPC最大,而A(5,0),C(0,2),则kPA==,kPC==3,所以k∈,即的取值范围是.7新课标A版·数学·必修5高中同步学习方略亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地展示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知

11、识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考出好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成的试卷吧!7

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。