资源描述:
《高考数学一轮复习 第9章 计数原理概率随机变量及其分布 第7节 独立重复试验与二项分布教师用书》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争第七节 独立重复试验与二项分布1.条件概率条件概率的定义条件概率的性质设A,B为两个事件,且P(A)>0,称P(B
2、A)=为在事件A发生的条件下,事件B发生的条件概率(1)0≤P(B
3、A)≤1;(2)如果B和C是两个互斥事件,则P(B∪C
4、A)=P(B
5、A)+P(C
6、A)2.事件的相互独立性(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事
7、件B相互独立.(2)性质:①若事件A与B相互独立,则P(B
8、A)=P(B),P(A
9、B)=P(A).②如果事件A与B相互独立,那么A与,与B,与也相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中Ai(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…An)=P(A1)P(A2)P(A3)…P(An).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(
10、n,p),并称p为成功概率.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若事件A,B相互独立,则P(B
11、A)=P(B).( )(2)P(AB)表示事件A,B同时发生的概率,一定有P(AB)=P(A)·P(B).( )(3)二项分布是一个用公式P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.( )(4)相互独立事件一定是互斥事件.( )[答案] (1)√ (2)× (3)√ (4)×为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员
12、、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争2.(教材改编)小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是( )A. B. C. D.A [所求概率P=C·1·3-1=.]3.已知盒中装有3个
13、红球、2个白球、5个黑球,它们大小形状完全相同.甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( )A.B.C.D.B [设“第一次拿到白球”为事件A,“第二次拿到红球”为事件B,依题意P(A)==,P(AB)==.故P(B
14、A)==.]4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36 D.0.312A [3次投篮投中2次的概率为P(k=2)=C×0.62×(1-0.6),投中3次的概率为P(
15、k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C×0.62×(1-0.6)+0.63=0.648.故选A.]5.(2017·湖州调研)如图971所示的电路有a,b,c三个开关,每个开关开或关的概率都是,且是相互独立的,则灯泡甲亮的概率为________.图971为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围为深入贯彻落实党的十九大精神和习近平总书记的重要指示
16、精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争 [理解事件之间的关系,设“a闭合”为事件A,“b闭合”为事件B,“c闭合”为事件C,则灯亮应为事件AC,且A,C,之间彼此独立,且P(A)=P()=P(C)=.所以P(AC)=P(A)P()P(C)=.]条件概率 (1)从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B
17、A)=( )A. B.C.D.(2)在100