资源描述:
《高中数学1_2_1_1排列及排列数公式学案新人教b版选修2_3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。排列及排列数公式1.理解排列的概念,能正确写出一些简单问题的所有排列.(重点)2.会用排列数公式进行求值和证明.(难点)[基础·初探]教材整理1 排列的概念阅读教材P9,完成下列问题.1.一般地,从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.两个排列相同的含义为:组成排列的元素相同,并且元素的排列顺序也相同.判断(正确的打“√”,错误
2、的打“×”)(1)两个排列的元素相同,则这两个排列是相同的排列.( )(2)从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法属于排列问题.( )(3)有十二名学生参加植树活动,要求三人一组,共有多少种分组方案属于排列问题.( )(4)从3,5,7,9中任取两个数进行指数运算,可以得到多少个幂属于排列问题.( )(5)从1,2,3,4中任取两个数作为点的坐标,可以得到多少个点属于排列问题.( )【解析】 (1)× 因为相同的两个排列不仅元素相同,而且元素的排列顺序相同.(2)√ 因为三名学生参赛的科目不同为不同的
3、选法,每种选法与“顺序”有关,属于排列问题.(3)× 因为分组之后,各组与顺序无关,故不属于排列问题.(4)√ 因为任取的两个数进行指数运算,底数不同、指数不同结果不同.结果与顺序有关,故属于排列问题.(5)√ 因为纵、横坐标不同,表示不同的点,故属于排列问题.【答案】 (1)× (2)√ (3)× (4)√ (5)√对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事
4、务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。教材整理2 排列数与排列数公式阅读教材P11,完成下列问题.排列数定义及表示从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A表示全排列的概念n个不同元素全部取出的一个排列阶乘的概念把n·(n-1)·…·2·1记做n!,读作:n的阶乘排列数公式A=n(n-1)(n-2)…(n-m+1)阶乘式A=(n,m∈N+,m≤n)特殊情况A=n!,A=1,0!=11.A=_____
5、___,A=________.【解析】 A=4×3=12;A=3×2×1=6.【答案】 12 62.=________.【解析】 ==.【答案】 3.由1,2,3这三个数字组成的三位数分别是________.【解析】 用树形图表示为由“树形图”可知组成的三位数为123,132,213,231,312,321,共6个.【答案】 123,132,213,231,312,321[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 对分管部门的党风廉政建设抓得不够紧,找问题的多,批评教育的少,放松了对分管部门
6、的日常监督、管理和教育。对分管部门干部发现的一些违规违纪小错提醒不够、批评教育不力,监督执纪“四种形态”作用发挥不够一岗双责落实还不到位。受事务性工作影响,对分管单位一岗双责常常落实在安排部署上、口头要求上,实际督导、检查的少,指导、推进、检查还不到位。疑问2: 解惑: 疑问3: 解惑: [小组合作型]排列的概念 判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任
7、班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【精彩点拨】 判断是否为排列问题关键是选出的元素在被安排时,是否与顺序有关.若与顺序有关,就是排列问题,否则就不是排列问题.【自主解答】 (1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排
8、列问题.所以在上述各题中(2)(5)(6)属于排列问题.1.解决本题的关键有两点:一是“取出元素不重复”,二是“与顺序有关”.2.判断一个具体问题是否为排列问题,就看取出元素后排列是有序的还是无序的,而检验它是否有序的依