欢迎来到天天文库
浏览记录
ID:31174645
大小:12.93 MB
页数:33页
时间:2019-01-07
《高考数学一轮复习第二章函数概念与基本初等函数i2_9函数模型及其应用课件文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第9讲 函数模型及其应用考试要求1.指数函数、对数函数以及幂函数的增长特征,A级要求;2.函数模型(指数函数、对数函数、幂函数、分段函数等)的广泛应用,B级要求.知识梳理几类函数模型及其增长差异(1)几类函数模型对数函数型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型f(x)=axn+b(a,b为常数,a≠0)(2)指数、对数、幂函数模型性质比较函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调单调单调递增增长速度越来越快越来越慢相对
2、平稳图象的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax递增递增y轴x轴诊断自测1.判断正误(在括号内打“√”或“×”)(1)函数y=2x的函数值比y=x2的函数值大.( )(2)“指数爆炸”是指数型函数y=abx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( )(3)幂函数增长比直线增长更快.( )(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)
3、<g(x).( )答案 (1)×(2)×(3)×(4)√答案 255.(2014·北京卷改编)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.答案 3.75考点一 二次函数模型【例1】A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城
4、市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?规律方法在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域之间的位置关系讨论求解.【训练1】(2017·武汉高三检测)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)
5、为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是________万元.答案 43规律方法在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【训练2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上
6、涨10%),又经历了n次跌停(每次下跌10%),给出该股民关于这支股票的盈亏情况(不考虑其他费用):①略有盈利;②略有亏损;③没有盈利也没有亏损.其中说法正确的为________(填序号).解析设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.答案②规律方法(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要
7、构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【训练3】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%[思想方法]解函数应用问题的步骤(四步八字)(1)审题:弄清题意
8、,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.以上过程用框图表示如下:[易错防范]1.解应用题思路的关键是审题,不仅要明白、理解问题讲的是什么,还要特别注意一些关键的字眼(如“几年后”与“第几年后”),
此文档下载收益归作者所有