高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31

高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31

ID:30988515

大小:42.50 KB

页数:3页

时间:2019-01-05

高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31_第1页
高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31_第2页
高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31_第3页
资源描述:

《高中数学 第三章 概率 3_1 随机事件的概率(第3课时)课堂探究 新人教a版必修31》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学第三章概率3.1随机事件的概率(第3课时)课堂探究新人教A版必修31.若事件A与事件B不互斥,则P(A∪B)≠P(A)+P(B)剖析:否定一个等式不成立,只需举出一个反例即可.例如:抛掷一枚均匀的正方体骰子,向上的点数是1或2或3或4或5或6为事件A,且A=B,则A∪B表示向上的点数是1或2或3或4或5或6,则P(A)=P(B)=P(A∪B)=1,P(A)+P(B)=1+1=2,所以此时P(A∪B)≠P(A)+P(B),即P(A∪B)=P(A)+P(B)不成立.上例中P(A∪B)≠P(A)+P(B)的原因是事件A与事件B不是互斥事

2、件.其实对于任意事件A与B,有P(A∪B)=P(A)+P(B)-P(A∩B)(不要求证明也不要求会用),那么当且仅当A∩B=,即事件A与事件B是互斥事件时,P(A∩B)=0,此时才有P(A∪B)=P(A)+P(B)成立.2.事件与集合之间的对应关系剖析:事件与集合之间的对应关系如下表:事件集合必然事件全集不可能事件空集()事件B包含于事件A(B⊆A)集合B包含于集合A(B⊆A)事件B与事件A相等(B=A)集合B与集合A相等(B=A)事件B与事件A的并事件(B∪A)集合B与集合A的并集(B∪A)事件B与事件A的交事件(B∩A)集合B与集合A

3、的交集(B∩A)事件B与事件A互斥(B∩A=)集合B与集合A的交集为空集(B∩A=)事件A的对立事件集合A的补集(∁UA)题型一判断互斥(对立事件)【例题1】判断下列各事件是否是互斥事件,如果是互斥事件,那么是否是对立事件,并说明理由.某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是女生.解:(1)是互斥事件.理由是在所选的2名同学中,“恰有1名男生”实质是选出“1名男生和1名女生”,它与“恰有2名男生”不可能同时发生,所以

4、是互斥事件.不是对立事件.理由是当选出的2名同学都是女生时,这两个事件都没有发生,所以不是对立事件.(2)不是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”这两种结果,当选出的是1名男生、1名女生时,它们同时发生.这两个事件也不是对立事件.理由是这两个事件能同时发生,所以不是对立事件.(3)是互斥事件.理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,它与“全是女生”不可能同时发生.是对立事件.理由是这两

5、个事件不能同时发生,且必有一个发生,所以是对立事件.反思判断互斥事件和对立事件时,主要用定义来判断.当两个事件不能同时发生时,这两个事件是互斥事件;当两个事件不能同时发生且必有一个发生时,这两个事件是对立事件.题型二概率加法公式的应用【例题2】某射箭运动员在一次训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射箭运动员在一次射击中:(1)射中10环或7环的概率;(2)射中7环以下的概率.分析:(1)利用互斥事件的概率加法公式解决;(2)转化为求对立事件的概率.解:(1)设“射中10环”为事件

6、A,“射中7环”为事件B,则“射中10环或7环”的事件为A∪B,事件A和事件B是互斥事件,故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49,所以射中10环或7环的概率为0.49.(2)设“射中7环以下”为事件C,“射中7环或8环或9环或10环”为事件D,则P(D)=0.21+0.23+0.25+0.28=0.97.又事件C和事件D是对立事件,则P(C)=1-P(D)=1-0.97=0.03.所以射中7环以下的概率是0.03.反思求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的并;二是先求对立事件的概率,

7、进而再求所求事件的概率.题型三易错辨析【例题3】抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是,记事件A为“出现奇数”,事件B为“向上的点数不超过3”,求P(A∪B).错解:设向上的一面出现1点、2点、3点、4点、5点、6点分别记为事件C1,C2,C3,C4,C5,C6,则它们两两是互斥事件,且A=C1∪C3∪C5,B=C1∪C2∪C3.P(C1)=P(C2)=P(C3)=P(C4)=P(C5)=P(C6)=.则P(A)=P(C1∪C3∪C5)=P(C1)+P(C3)+P(C5)=++=.P(B)=P(

8、C1∪C2∪C3)=P(C1)+P(C2)+P(C3)=++=.故P(A∪B)=P(A)+P(B)=+=1.错因分析:错解的原因在于忽视了“和事件”概率公式应用的前提条件,由于“朝上一面的数是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。