高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版

高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版

ID:30978482

大小:222.00 KB

页数:18页

时间:2019-01-05

高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版_第1页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版_第2页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版_第3页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版_第4页
高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版_第5页
资源描述:

《高考数学大一轮复习 第十三章 推理与证明、算法、复数 13_3 数学归纳法试题 理 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺第十三章推理与证明、算法、复数13.3数学归纳法试题理北师大版数学归纳法数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:(1)验证:当n取第一个值n0(如n0=1或2等)时,命题成立;(2)在假设当n=k(k∈N+,k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.根据(1)(2)可以断定命题对一切从n0开始的正整数n都成立.【思考辨析】判断下列结论是否正确(请在括号

2、中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.( × )(2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × )(3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n边形的内角和公式时,n0=3.( √ )1.用数学归纳法证明1+a+a2+…+an+1

3、=(a≠1,n∈N+),在验证n=1时,等式左边的项是(  )A.1B.1+aC.1+a+a2D.1+a+a2+a3答案 C解析 当n=1时,n+1=2,∴左边=1+a1+a2=1+a+a2.2.(2016·黄山模拟)已知n为正偶数,用数学归纳法证明1-+-+…-=2(++…+)时,若已假设n=k(k≥2且k认真组织会员学习,及时将党的路线、方针、政策,及时将新的法律和规章,传达到会员,协会编印了《会员之家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝

4、各位企业家事业兴旺为偶数)时命题为真,则还需要用归纳假设再证(  )A.n=k+1时等式成立B.n=k+2时等式成立C.n=2k+2时等式成立D.n=2(k+2)时等式成立答案 B解析 因为n为正偶数,n=k时等式成立,即n为第k个偶数时命题成立,所以需假设n为下一个偶数,即n=k+2时等式成立.3.在应用数学归纳法证明凸n边形的对角线为n(n-3)条时,第一步检验n等于(  )A.1B.2C.3D.0答案 C解析 凸n边形边数最小时是三角形,故第一步检验n=3.4.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上(

5、  )A.k2+1B.(k+1)2C.D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2答案 D解析 等式左边是从1开始的连续自然数的和,直到n2.故n=k+1时,最后一项是(k+1)2,而n=k时,最后一项是k2,应加上(k2+1)+(k2+2)+(k2+3)+…+(k+1)2.5.(教材改编)已知{an}满足an+1=a-nan+1,n∈N+,且a1=2,则a2=________,a3=________,a4=________,猜想an=________.答案 3 4 5 n+1题型一 用数学归纳法证明等式认真组织会员学习,及时将党的

6、路线、方针、政策,及时将新的法律和规章,传达到会员,协会编印了《会员之家》宣传资料共四期我们在这里,召开私营企业家联谊会,借此机会,我代表成都市渝中工商局、渝中区私营企业协会,祝各位领导新年快乐、工作愉快、身体健康,祝各位企业家事业兴旺例1 设f(n)=1+++…+(n∈N+).求证:f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N+).证明 ①当n=2时,左边=f(1)=1,右边=2(1+-1)=1,左边=右边,等式成立.②假设n=k(k≥2,k∈N+)时,结论成立,即f(1)+f(2)+…+f(k-1)=k[f(k)-1]

7、,那么,当n=k+1时,f(1)+f(2)+…+f(k-1)+f(k)=k[f(k)-1]+f(k)=(k+1)f(k)-k=(k+1)[f(k+1)-]-k=(k+1)f(k+1)-(k+1)=(k+1)[f(k+1)-1],∴当n=k+1时结论成立.由①②可知当n∈N+时,f(1)+f(2)+…+f(n-1)=n[f(n)-1](n≥2,n∈N+).思维升华 用数学归纳法证明恒等式应注意(1)明确初始值n0的取值并验证n=n0时等式成立.(2)由n=k证明n=k+1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②

8、添拆项;③配方法. 用数学归纳法证明:++…+=(n∈N+).证明 ①当n=1时,左边==,右边==,左边=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。