欢迎来到天天文库
浏览记录
ID:30897968
大小:475.50 KB
页数:16页
时间:2019-01-04
《高中数学 第2章 圆锥曲线与方程 2_5 圆锥曲线的统一定义学案 苏教版选修2-1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线2.5 圆锥曲线的统一定义1.了解圆锥曲线的统一定义,掌握圆锥曲线的离心率、焦点、准线等概念.(重点)2.理解并会运用圆锥曲线的共同性质,解决一些与圆锥曲线有关的简单几何问题和实际问题.(难点)[基础·初探]教材整理 圆锥曲线的统一定义阅读教材P56“思考”以上的部分,完成下列问题.1.平面内到一个定点F和到一条定直线l(F不在l上)的距离的比等于常数e的点的轨迹.当02、示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.2.椭圆+=1(a>b>0)的准线方程为x=±,+=1(a>b>0)的准线方程为y=±.双曲线-=1(a>0,b>0)的准线方程为x=±,双曲线-=1(a>0,b>0)的准线方程为y=±.1.判断(正确的打“√”,错误的打“×”)(1)平面内到一个定点F和到一条定直线l的距离的比等于2的点的轨迹是双曲线.( )政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特3、别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线(2)椭圆+y2=1的准线方程是x=±.( )(3)双曲线离心率的取值范围是(1,+∞).( )(4)圆锥曲线的准线与其对称轴垂直.( )【答案】 (1)× (2)√ (3)√ (4)×2.双曲线-y2=1的准线方程为________.【解析】 易知a2=15,b2=1,∴c2=a2+b2=16,即c4、=4,则双曲线的准线方程为x=±.【答案】 x=±3.焦点坐标为F1(-2,0),F2(2,0),则准线方程为x=±的椭圆的标准方程为______.【导学号:09390050】【解析】 由题意知c=2,则==,故a2=5,所以b2=a2-c2=1,则椭圆的方程为+y2=1.【答案】 +y2=14.双曲线-=1(a>0,b>0)的离心率为2,右准线为x=,则右焦点的坐标为________.【解析】 据题意知解得a=1,c=2,则右焦点的坐标为(2,0).【答案】 (2,0)[质疑·手记]预习完成后,请将你的疑问记录,并5、与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线[小组合作型]已知焦点和准线求圆锥曲线的方程 已知某圆锥曲线的准线是x=1,在离心率分别取下列各值时,求圆锥曲线的标准方程:(1)e=;(2)e=1;(3)e6、=.【精彩点拨】 【自主解答】 (1)离心率决定了它是椭圆,准线方程决定了它的焦点在x轴上,由=1,=,解得c=,a=,b2=,所求方程为+=1.(2)离心率决定了它是抛物线,准线方程决定了它的焦点在x轴负半轴上,=1,可得y2=-4x.(3)离心率决定了它是双曲线,准线方程决定了它的焦点在x轴上,=1,=,解得c=,a=,b2=.所求方程为-=1.1.本例中,由于要求的是圆锥曲线的“标准”方程,其准线有固定公式,因而可直接列出基本量满足的关系式.2.已知焦点、准线及离心率,也可直接由=e求出M点的轨迹方程.政德才能7、立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线[再练一题]1.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且8、AM9、=,10、AF11、=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x2=2py(p>0),设A(x0,y0),由题知M.∵12、AF13、14、=3,∴y0+=3,∵15、AM16、=,∴x+2=17,∴x=8,代入方程x=2py0得,8=2p,解得p=2或p=4.∴所求抛物线的标准方程为x2=4y或x2=8y.用圆锥曲线的统一定义求轨迹 已知动点P(x,y)到点A(0,3)与到定直线y=9的距离之比为,求动点P的轨迹.【精彩点拨】 此题解法有两种:一是定义法,二是直译法.【自主解答】 法一:
2、示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线l是圆锥曲线的准线.2.椭圆+=1(a>b>0)的准线方程为x=±,+=1(a>b>0)的准线方程为y=±.双曲线-=1(a>0,b>0)的准线方程为x=±,双曲线-=1(a>0,b>0)的准线方程为y=±.1.判断(正确的打“√”,错误的打“×”)(1)平面内到一个定点F和到一条定直线l的距离的比等于2的点的轨迹是双曲线.( )政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特
3、别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线(2)椭圆+y2=1的准线方程是x=±.( )(3)双曲线离心率的取值范围是(1,+∞).( )(4)圆锥曲线的准线与其对称轴垂直.( )【答案】 (1)× (2)√ (3)√ (4)×2.双曲线-y2=1的准线方程为________.【解析】 易知a2=15,b2=1,∴c2=a2+b2=16,即c
4、=4,则双曲线的准线方程为x=±.【答案】 x=±3.焦点坐标为F1(-2,0),F2(2,0),则准线方程为x=±的椭圆的标准方程为______.【导学号:09390050】【解析】 由题意知c=2,则==,故a2=5,所以b2=a2-c2=1,则椭圆的方程为+y2=1.【答案】 +y2=14.双曲线-=1(a>0,b>0)的离心率为2,右准线为x=,则右焦点的坐标为________.【解析】 据题意知解得a=1,c=2,则右焦点的坐标为(2,0).【答案】 (2,0)[质疑·手记]预习完成后,请将你的疑问记录,并
5、与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: 政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线[小组合作型]已知焦点和准线求圆锥曲线的方程 已知某圆锥曲线的准线是x=1,在离心率分别取下列各值时,求圆锥曲线的标准方程:(1)e=;(2)e=1;(3)e
6、=.【精彩点拨】 【自主解答】 (1)离心率决定了它是椭圆,准线方程决定了它的焦点在x轴上,由=1,=,解得c=,a=,b2=,所求方程为+=1.(2)离心率决定了它是抛物线,准线方程决定了它的焦点在x轴负半轴上,=1,可得y2=-4x.(3)离心率决定了它是双曲线,准线方程决定了它的焦点在x轴上,=1,=,解得c=,a=,b2=.所求方程为-=1.1.本例中,由于要求的是圆锥曲线的“标准”方程,其准线有固定公式,因而可直接列出基本量满足的关系式.2.已知焦点、准线及离心率,也可直接由=e求出M点的轨迹方程.政德才能
7、立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线[再练一题]1.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且
8、AM
9、=,
10、AF
11、=3,求此抛物线的标准方程.【解】 设所求抛物线的标准方程为x2=2py(p>0),设A(x0,y0),由题知M.∵
12、AF
13、
14、=3,∴y0+=3,∵
15、AM
16、=,∴x+2=17,∴x=8,代入方程x=2py0得,8=2p,解得p=2或p=4.∴所求抛物线的标准方程为x2=4y或x2=8y.用圆锥曲线的统一定义求轨迹 已知动点P(x,y)到点A(0,3)与到定直线y=9的距离之比为,求动点P的轨迹.【精彩点拨】 此题解法有两种:一是定义法,二是直译法.【自主解答】 法一:
此文档下载收益归作者所有