电路动态分析的几个结论及应用

电路动态分析的几个结论及应用

ID:30850681

大小:83.00 KB

页数:8页

时间:2019-01-04

电路动态分析的几个结论及应用_第1页
电路动态分析的几个结论及应用_第2页
电路动态分析的几个结论及应用_第3页
电路动态分析的几个结论及应用_第4页
电路动态分析的几个结论及应用_第5页
资源描述:

《电路动态分析的几个结论及应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、电路动态分析的几个结论及应用门宁利(陕西省长安区第三中学陕西西安710100)摘要:电路动态分析有几个很实用的二级结论,很多老师在教学实践中经常使用,这里,利用数学知识予以证明,兼论及其应用。关键词:电路动态分析二级结论证明应用在直流电路问题中,对电路作动态分析是一类典型的问题。在这里,有几个二级结论,书上虽没有,但却很有用。本文就这几个结论的导出及应用做一讨论。一、在闭合电路中,只要部分电阻增大,则总电阻必增大;反之,则减小。即R部分1—R总';R部分1—R总1°设有两电阻Ri、R2,其中&保持不变,R2逐渐增大。(1)当它们串联时:Ro'RT=R!+R2,R并=

2、R[/(¥+l)(2)当它们并联时:R2'空一>R』而不管怎样复杂的电路,总可等效成串联或并联电路,所以结论普遍成立。例1、如图(1)所示,求Rab的取值范围。分析:据“R撷分t一R.J知,当R3=30Q时,Rab有最大值,当R3=O时,Rab有最小值。解:当R3=O时,有RABmin二R1=1OQ时当R3=30Q时,有Rabe产Ri+J吟=22QR2+/?3.•.10QWRabW22Q二、“并同串反”规律一一所谓'‘并同”,即某一电阻增大(或减小)时,与它关联或间接并联的电阻中的电流、两端电压、电功率都将增大(或减小);所谓“串反”,即某一电阻增大(或减小)时,与

3、它串联或间接串联的电阻中的电流、两端电压、电功率都将减小(或增大)。使用条件:1、适用于只有一个支路的电阻发生变化的情况。若几条支路的电阻同时发生变化(如本文的例6、例7),则不适用。2、当整个电路可等效为一个并联电路时,若电源内阻不计(如例2中的Rl1=0,r='0时),则不适用。下面用例2将该结论导出。例2、如图(2)所示,当滑动变阻器的滑片P向左移动时,Li、L2的亮度变化情况是L],L2。分析:I=e/RP左移——)P1——)P总f>I干小结规律:并同:L2中的:L2‘=U』/R2,U2!=U并,P2f=U^/R2例3、如图(3)所示,当开关S断开时,灯乙、

4、丙均正常发光时,当S闭合时,乙灯亮度,丙灯亮度O分析:开关S闭合,即在a、b两点并联了一个支路,将引起Rab",由"并同串反”规律知:PJ变暗),PJ变亮)。三、在闭合电路中,某部分电阻由并联在某一支路变为串联在干路上时,总电阻变大;反之,总电阻变小。简述为:“并变串,电阻增;串变并,电阻减。”设有一段电路如图(4)所示,&是定值电阻,R。是滑动变阻器,当滑片P由B->A移动时,PB部分由并在下面的支路变为串在干路上,令PPB=—则R总=一兀)_R[R()—Rlx十兀二十x+xR]+Rq—x求导数:R/总二(輕二空+QR、+Rq—x(_/?])(/?]+/?o_兀)

5、_(/?[&)一尽兀)(_1)*](&+7?0—%)2+&)_兀)2_R;(/?]+7?0-x)2(&+R()_力?(/?()一x)(2&+R()_x)(/?]+/?0-x)2•••在区间(0,Ro)内,R总'>0o•••在区间[0,R°]内单调增加。即J(并变串),R.J(阻值增)。反之,J(串变并),R总"(阻值减)。例4:如图(5)所示,负载电阻R=200Q,e=8.0V,内阻不计,试分析:若用最大阻值Ro=lOOQ,额定电流Io=100mA滑动变阻器作分压器,是否可以安全使用?分析:滑片P右移时,PB部分由“串在干路”变成“并在支路”,总电阻逐渐变小,当Rp

6、b=0时,总电阻最小,此时I干最大,与I。比较即可。解:当Rpb=O时,有R总min=~^j=200xl00二型qR+R()200+1003•••I干max二£/R总罰二&0/型=O・12A=lOmA>Io即P接近B端时,PB部分将被烧断。•••不安全。例5:如图(6)所示,单刀双掷开关S扳向a时,干路电流为la;S扳向b时,干路电流为lb。两电流的大小关系是IaIb(填>或=或V)解:在S由扳向a变成扳向b的过程中,R2由"串在干路”变为“并在支路”,由“串变并,阻值减”知,R.J,而£不变。这些题若用解析法去做,会有如此简练吗?四、定和求积原理:若两正数之和为常

7、数K,当两数相等且等于£时,其积最大;当两数差异最大时,其积最小。2设有两正数兀1,兀2,且兀1+兀2=心则其积)匸兀1(K-X[)Z/Zr,.A.A=Kx~=~IX]—Kx+——)+——44二—(xi——)2+—(由此可知,当xi=x2=—时,有242V丄)丿max47(x}-x2)2+K2_4~4~(由此可知:当低-对最大时,丁有最小值)若并联电路中,两支路电阻之和为定值,可依据此原理求R并的最大值及最小值。例6:如图(7)所示,滑片P可上下自由移动,贝畑示数最大和最小应为A和Ao(滑动变阻器最大值R=50Q)分析:两支路电阻之和R上+R下=(Ri+兀

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。