欢迎来到天天文库
浏览记录
ID:30847489
大小:905.50 KB
页数:6页
时间:2019-01-04
《奥数:第六讲找规律》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六讲找规律(一)例l观察下面由点组成的图形(点群),请回答:(1)方框内的点群包含多少个点?(2)第(10)个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?解:数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可见,这是一个等差数列,在每相邻的两个数中,后一个数都比前一个数大3(即公差是3).(1)因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).(2)列表,依次写出各点群的点数,可知第(10)个点群包含有28个点.(3)前十个点群,所有点的总数是:例2图6~2表示“宝塔”,它们的层数不同,但都
2、是由一样大的小三角形摆成的.仔细观察后,请你回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?(3)从第(1)到第(10)的十个“宝塔”,共包含多少个小三角形?解:(1)数一数“宝塔”每层包含的小三角形数:可见l,3,5,7是个奇数列,所以由这个规律猜出第五层应包含的小三角形是9个.(2)整个五层塔共包含的小三角形个数是:1+3+5+7+9=25(个).(3)每个“宝塔”所包含的小三角形数可列表如下:由此发现从第(1)到第(10)共十个“宝塔”所包含的小三角形数是从l开始的自然数平方数列
3、前十项之和:例3下面的图形表示由一些方砖堆起来的“宝塔”.仔细观察后,请你回答:(1)从上往下数,第五层包含几块砖?(2)整个五层的“宝塔”共包含多少块砖?(3)若另有一座这样的十层宝塔,、共包含多少块砖?解:(1)数一数,“宝塔”每层包含的方砖块数:可见各层的方砖块数组成自然数平方数列,按此规律,第五层应包含的方砖块数是:5×5=25(块).(2)整个五层“宝塔”共包含的方砖块数应是从1开始的前五个自然数的平方数相加之和,即:1+4+9+16+25=55(块).(3)根据上面得到的规律,可求出十层宝塔所包含的方砖的块数:习题六1.观察
4、图6—4中的点群,请回答:(1)方框内的点群包含多少个点?(2)第10个点群中包含多少个点?(3)前十个点群中,所有点的总数是多少?2.观察下面图6—5中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?3.观察图6—6中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群包含多少个点?(3)前十个点群中,所有点的总数是多少?4.图6—7所示为一堆砖.中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2
5、块、1块.问:(1)这堆砖共有多少块?(2)如果中央最高一摞是100块,两边按图示的方式堆砌,问这堆砖共多少块?5.图6—8所示为堆积的方砖,共画出了五层.如果以同样的方式继续堆积下去,共堆积了10层,问:(1)能看到的方砖有多少块?(2)不能看到的方砖有多少块?习题六解答1.解:(1)数一数,前四个点群包含的点数分别是:1,5,9,13.不难发现,这是一个等差数列,公差是4,可以推出,第5个点群包含的点数是:13+4=17(个).(2)下面依次写出各点群的点数,可得第10个点群的点数为37.(3)前十个点群的所有点数为:2.解:(1)
6、数一数,前4个点群包含的点数分别是:1,4,9,16.不难发现,这是一个自然数平方数列.所以第5个点群(即方框中的点群)包含的点数是:5×5=25(个).(2)按发现的规律推出,第十个点群的点数是:10×10=100(个).(3)前十个点群,所有的点数是:3.解:(1)数一数,前四个点群包含的点数分别是:4,8,12,16.不难发现,这是一个等差数列,公差是4,可以推出,第5个点群(即方框中的点群)包含的点数是:16+4=20(个).(2)下面依次写出各点群的点数,可得第10个点群的点数为40.(3)前十个点群的所有的点数为:4.解:从
7、最简单情况人手,找规律:按着这种规律可求得,:(1)当中央最高一摞是10块时,这堆砖的总数是:l+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10=100(块).(2)当中央最高一摞是100块时,这堆砖的总数是:1+2+3+……+98+99+100+99+98+……+3+2+1=100×100=10000(块).5.解:(1)数一数,前五层中各层可见的方砖数是:l,3,5,7,9不难发现,这是一个奇数列.照此规律,十层中可见的方砖总数是:1+3+5+7+9+11+13+15+17+19=100(块).
8、(2)再想一想,前五层中,各层不能看到的方砖数是:第一层0块;第二层1块;第三层4块;第四层9块;第五层16块;不难发现,1,4,9,16是自然数平方数列,按照此规律把其余各层看不见的砖块数写出来(如下表)
此文档下载收益归作者所有