七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版

七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版

ID:30798223

大小:121.50 KB

页数:6页

时间:2019-01-03

七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版_第1页
七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版_第2页
七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版_第3页
七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版_第4页
七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版_第5页
资源描述:

《七年级数学下册 第5讲 整式的加减培优讲义(无答案) 新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线第05讲整式的加减考点·方法·破译1.掌握同类项的概念,会熟练地进行合并同类项的运算.2.掌握去括号的法则,能熟练地进行加减法的运算.3.通过去括号,合并同类项和整式加减的学习,体验如何认识和抓住事物的本质特征.经典·考题·赏析【例1】(济南)如果和是同类项,那么a、b的值分别是()A.B.C.D.【解法指导】同类项与系数的大小无关,与字母的排列顺序也无关,只与是否含相同字母,且相同字母的指数是否相同有

2、关.解:由题意得,∴【变式题组】01.(天津)已知a=2,b=3,则()  A.ax3y2与bm3n2是同类项B.3xay3与bx3y3是同类项C.Bx2a+1y4与ax5yb+1是同类项D.5m2bn5a与6n2bm5a是同类项02.若单项式2X2ym与-xny3是同类项,则m=___________,n=___________.03.指出下列哪些是同类项⑴a2b与-ab2⑵xy2与3y2x(3)m-n与5(n-m)⑷5ab与6a2b【例2】(河北石家庄)若多项式合并同类项后是三次二项式,则m应满足的条件是___________.【

3、解法指导】合并同类项时,把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.解:因为化简后为三次二项式,而5x3+3已经为三次二项式,故二次项系数为0,即-2m-2=0,∴m=-1【变式题组】01.计算:-(2x2-3x-1)-2(x2-3x+5)+(x2+4x+3)02.(台州)(2x-4y)+2y03.(佛山)m-n-(m+n)【例3】(泰州)求整式3x2-5x+2与2x2+x-3的差.政德才能立得稳、立得牢。要深入学习贯彻习近平新时代中国特色社会主义思想特别是习近平总书记关于“立政德”的重要论述,深刻认识新时代立政德的

4、重要性和紧迫性。“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线【解法指导】在求两个多项式的差时,应先将这两个多项式分别用括号括起来,再去括号,而去括号可以用口诀:去括号,看符号,是“+”号,不变号,是“-”号,全变号,去了括号后,有同类项再合并同类项.解:(3x2-5x+2)-(2x2+x-3)=3x2-5x+2-2x2-x+3=x2-6x+5【变式题组】01.一个多项式加上-3x+2xy得x2-3xy+y2,则这个多项式是___________.

5、02.减去2-3x等于6x2-3x-8的代数式是___________.【例4】当a=,b=时,求5(2a+b)2-3(3a+2b)2+2(3a+2b)的值.【解法指导】将(2a+b)2,(3a+2b)分别视为一个整体,因此可以先合并“同类项”再代入求值,对于多项式求值问题,通常先化简再求值.解:5(2a+b)2-3(3a+2b)-3(2a+b)2+2(3a+2b)=(5-3)(2a+b)2+(2-3)(3a+2b)=2(2a+b)2-(3a+2b)∵a=,b=∴原式=【变式题组】01.(江苏南京)先化简再求值:(2a+1)2-2(2

6、a+1)+3,其中a=2.02.已知a2+bc=14,b2-2bc=-6,求3a2+4b2-5bC.【例5】证明四位数的四个数字之和能被9整除,因此四位数也能被9整除.【解法指导】可用代数式表示四位数与其四个数之和的差,然后证这个差能被9整除.证明:设此四位数为1000a+100b+10c+d,则1000a+100b+10c+d-(a+b+c+d)=999a+99b+9c=9(111a+11b+c)∵111a+11b+c为整数,∴1000a+100b+10c+d=9(111a+11b+c)+(a+b+c+d)∵9(111a+11b+c

7、)与(a+b+c+d)均能被9整除∴1000a+100b+10c+d也能被9整除【变式题组】01.已知a<b<c,且x<y<z,下列式子中值最大的可能是()A.ax+by+czB.ax+cy+bzC.bx+cy+azD.bx+ay+cz02.任何三位数减去此三位数的三个数字之和必为9的倍数.【例6】将(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0,求a12+a10+a8+……+a4+a2+a0的值.【解法指导】要求系数之和,但原式展开含有x项,如何消去x项,可采用赋特殊值法.解:令x=1得a12+a

8、11+……+a1+a0=1令x=-1得a12-a11+a10-……-a1+a0=729两式相加得2(a12+a10+a8+……+a2+a0)=730∴a12+a10+a8+……+a2+a0=365【变式题组】01.已知(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。