资源描述:
《introduction to smooth manifolds(lee)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.was
2、hington.edu/~leec2000byJohnM.LeePrefaceThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifolds,forstudentswhoalreadyhaveasolidacquaintancewithgeneraltopology,thefundamentalgroup,andcoveringspaces,aswellasbasicundergraduatelinearalgebraandrealanalysis
3、.Itisanaturalsequeltomyearlierbookontopologicalmanifolds[Lee00].Thissubjectisoftencalleddierentialgeometry."Ihavemostlyavoidedthisterm,however,becauseitappliesmoreproperlytothestudyofsmoothmanifoldsendowedwithsomeextrastructure,suchasaRiemannianmet-ric,asymplecticstr
4、ucture,aLiegroupstructure,orafoliation,andofthepropertiesthatareinvariantundermapsthatpreservethestructure.Al-thoughIdotreatallofthesesubjectsinthisbook,theyaretreatedmoreasinterestingexamplestowhichtoapplythegeneraltheorythanasobjectsofstudyintheirownright.Astudentwho
5、nishesthisbookshouldbewellpreparedtogoontostudyanyofthesespecializedsubjectsinmuchgreaterdepth.Thebookisorganizedroughlyasfollows.Chapters1through4aremainlydenitions.Itisthebaneofthissubjectthattherearesomanydenitionsthatmustbepiledontopofoneanotherbeforeanythingin-
6、terestingcanbesaid,muchlessproved.Ihavetried,nonetheless,tobringinsignicantapplicationsasearlyandasoftenaspossible.TherstonecomesattheendofChapter4,whereIshowhowtogeneralizetheclassicaltheoryoflineintegralstomanifolds.Thenextthreechapters,5through7,presenttherstoffo
7、urmajorfoundationaltheoremsonwhichallofsmoothmanifoldstheoryrests
8、theinversefunctiontheorem
9、andsomeapplicationsofit:tosubmanifoldthe-viPrefaceory,embeddingsofsmoothmanifoldsintoEuclideanspaces,approximationofcontinuousmapsbysmoothones,andquotientsofmanifoldsbygroupacti
10、ons.Thenextfourchapters,8through11,focusontensorsandtensoreldsonmanifolds,andprogressfromRiemannianmetricsthroughdi