资源描述:
《Springer.Lee.Introduction.to.Smooth.Manifolds(Springer.GTM.218)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.washington.edu/~leec2000
2、byJohnM.LeeCorrectionstoIntroductiontoSmoothManifoldsVersion3.0byJohnM.LeeApril18,2001Page4,secondparagraphafterLemma1.1:Omitredundantthe."Page11,Example1.6:Inthethirdlineabovethesecondequation,changeforeachj"toforeachi."Page12,Example1.7,line5:Changemanifold"tosmoothmanifold."Pag
3、e13,Example1.11:Justbeforeandinthedisplayedequation,change'(')−1toji'(')−1(twice).ijPage21,Problem1-3:Changethedenitionofetoe(x)=−(−x).(Thisisstereographicprojectionfromthesouthpole.)Page24,5thlinebelowtheheading:multiples"ismisspelled.Page24,lastparagraphbeforeExercise2.1:Th
4、ereisasubtleproblemwiththeden-itionofsmoothmapsbetweenmanifoldsgivenhere,becausethisdenitiondoesn'tobviouslyimplythatsmoothmapsarecontinuous.Here'showtoxit.ReplacethethirdsentenceofthisparagraphbyWesayFisasmoothmapifforanyp2M,thereexistcharts(U;')con-tainingpand(V;)containingF(p)suchth
5、atF(U)VandthecompositemapF'−1issmoothfrom'(U)to(V).Notethatthisdenitionimplies,inparticular,thateverysmoothmapiscontinuous:IfWNisanyopenset,foreachp2F−1(W)wecanchooseacoordinatedomainVWcontainingF(p),andthenthedenitionguaranteestheexistenceofacoordinatedomainUcontainingpsuchthatUF−
6、1(V)F−1(W),whichimpliesthatF−1(W)isopen."Page25,Lemma2.2:ChangethestatementofthislemmatoLetM,NbesmoothmanifoldsandletF:M!Nbeanymap.ShowthatFissmoothifandonlyifitiscontinuousandsatisesthefollowingcondition:Givenanysmoothatlasesf(U;')gandf(V;)gforMandN,respectively,eachmapF'−1issmootho
7、nitsdomainofdenition."Page30,line6:ChangeopologyofMf"totopologyofM."Page31,Example2.10(e),rstline:Changeomplex"toreal."Page36,Exercise2.9:Replacetherstsentenceoftheexercisebythefollowing:ShowthatacoverfUgofXbyprecompactopensetsislocallyniteifandonlyi