资源描述:
《gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.washin
2、gton.edu/~leec2000byJohnM.LeePrefaceThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifolds,forstudentswhoalreadyhaveasolidacquaintancewithgeneraltopology,thefundamentalgroup,andcoveringspaces,aswellasbasicundergraduatelinearalgebraandrealanalysis.Itisa
3、naturalsequeltomyearlierbookontopologicalmanifolds[Lee00].Thissubjectisoftencalleddierentialgeometry."Ihavemostlyavoidedthisterm,however,becauseitappliesmoreproperlytothestudyofsmoothmanifoldsendowedwithsomeextrastructure,suchasaRiemannianmet-ric,asymplecticstructure,aL
4、iegroupstructure,orafoliation,andofthepropertiesthatareinvariantundermapsthatpreservethestructure.Al-thoughIdotreatallofthesesubjectsinthisbook,theyaretreatedmoreasinterestingexamplestowhichtoapplythegeneraltheorythanasobjectsofstudyintheirownright.Astudentwhonishesthisb
5、ookshouldbewellpreparedtogoontostudyanyofthesespecializedsubjectsinmuchgreaterdepth.Thebookisorganizedroughlyasfollows.Chapters1through4aremainlydenitions.Itisthebaneofthissubjectthattherearesomanydenitionsthatmustbepiledontopofoneanotherbeforeanythingin-terestingcanbes
6、aid,muchlessproved.Ihavetried,nonetheless,tobringinsignicantapplicationsasearlyandasoftenaspossible.TherstonecomesattheendofChapter4,whereIshowhowtogeneralizetheclassicaltheoryoflineintegralstomanifolds.Thenextthreechapters,5through7,presenttherstoffourmajorfoundationa
7、ltheoremsonwhichallofsmoothmanifoldstheoryrests
8、theinversefunctiontheorem
9、andsomeapplicationsofit:tosubmanifoldthe-viPrefaceory,embeddingsofsmoothmanifoldsintoEuclideanspaces,approximationofcontinuousmapsbysmoothones,andquotientsofmanifoldsbygroupactions.Thenextfourchapte
10、rs,8through11,focusontensorsandtensoreldsonmanifolds,andprogressfromRiemannianmetricsthroughdi