gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)

gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)

ID:14359330

大小:2.16 MB

页数:486页

时间:2018-07-28

gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第1页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第2页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第3页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第4页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第5页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第6页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第7页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第8页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第9页
gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)_第10页
资源描述:

《gtm 218-lee j.m___introduction to smooth manifolds (draft, 2000)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.washin

2、gton.edu/~leec2000byJohnM.LeePrefaceThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifolds,forstudentswhoalreadyhaveasolidacquaintancewithgeneraltopology,thefundamentalgroup,andcoveringspaces,aswellasbasicundergraduatelinearalgebraandrealanalysis.Itisa

3、naturalsequeltomyearlierbookontopologicalmanifolds[Lee00].Thissubjectisoftencalleddi erentialgeometry."Ihavemostlyavoidedthisterm,however,becauseitappliesmoreproperlytothestudyofsmoothmanifoldsendowedwithsomeextrastructure,suchasaRiemannianmet-ric,asymplecticstructure,aL

4、iegroupstructure,orafoliation,andofthepropertiesthatareinvariantundermapsthatpreservethestructure.Al-thoughIdotreatallofthesesubjectsinthisbook,theyaretreatedmoreasinterestingexamplestowhichtoapplythegeneraltheorythanasobjectsofstudyintheirownright.Astudentwho nishesthisb

5、ookshouldbewellpreparedtogoontostudyanyofthesespecializedsubjectsinmuchgreaterdepth.Thebookisorganizedroughlyasfollows.Chapters1through4aremainlyde nitions.Itisthebaneofthissubjectthattherearesomanyde nitionsthatmustbepiledontopofoneanotherbeforeanythingin-terestingcanbes

6、aid,muchlessproved.Ihavetried,nonetheless,tobringinsigni cantapplicationsasearlyandasoftenaspossible.The rstonecomesattheendofChapter4,whereIshowhowtogeneralizetheclassicaltheoryoflineintegralstomanifolds.Thenextthreechapters,5through7,presentthe rstoffourmajorfoundationa

7、ltheoremsonwhichallofsmoothmanifoldstheoryrests

8、theinversefunctiontheorem

9、andsomeapplicationsofit:tosubmanifoldthe-viPrefaceory,embeddingsofsmoothmanifoldsintoEuclideanspaces,approximationofcontinuousmapsbysmoothones,andquotientsofmanifoldsbygroupactions.Thenextfourchapte

10、rs,8through11,focusontensorsandtensor eldsonmanifolds,andprogressfromRiemannianmetricsthroughdi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。