gtm218.introduction.to.smooth.manifolds.-.john.m..lee

gtm218.introduction.to.smooth.manifolds.-.john.m..lee

ID:16070818

大小:2.16 MB

页数:486页

时间:2018-08-07

gtm218.introduction.to.smooth.manifolds.-.john.m..lee_第1页
gtm218.introduction.to.smooth.manifolds.-.john.m..lee_第2页
gtm218.introduction.to.smooth.manifolds.-.john.m..lee_第3页
gtm218.introduction.to.smooth.manifolds.-.john.m..lee_第4页
gtm218.introduction.to.smooth.manifolds.-.john.m..lee_第5页
资源描述:

《gtm218.introduction.to.smooth.manifolds.-.john.m..lee》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.washington.edu/~leec200

2、0byJohnM.LeePrefaceThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifolds,forstudentswhoalreadyhaveasolidacquaintancewithgeneraltopology,thefundamentalgroup,andcoveringspaces,aswellasbasicundergraduatelinearalgebraandrealanalysis.Itisanaturalsequeltomyearlierbookontopo

3、logicalmanifolds[Lee00].Thissubjectisoftencalleddi erentialgeometry."Ihavemostlyavoidedthisterm,however,becauseitappliesmoreproperlytothestudyofsmoothmanifoldsendowedwithsomeextrastructure,suchasaRiemannianmet-ric,asymplecticstructure,aLiegroupstructure,orafoliation,andofthepropertiestha

4、tareinvariantundermapsthatpreservethestructure.Al-thoughIdotreatallofthesesubjectsinthisbook,theyaretreatedmoreasinterestingexamplestowhichtoapplythegeneraltheorythanasobjectsofstudyintheirownright.Astudentwho nishesthisbookshouldbewellpreparedtogoontostudyanyofthesespecializedsubjectsinm

5、uchgreaterdepth.Thebookisorganizedroughlyasfollows.Chapters1through4aremainlyde nitions.Itisthebaneofthissubjectthattherearesomanyde nitionsthatmustbepiledontopofoneanotherbeforeanythingin-terestingcanbesaid,muchlessproved.Ihavetried,nonetheless,tobringinsigni cantapplicationsasearlyandas

6、oftenaspossible.The rstonecomesattheendofChapter4,whereIshowhowtogeneralizetheclassicaltheoryoflineintegralstomanifolds.Thenextthreechapters,5through7,presentthe rstoffourmajorfoundationaltheoremsonwhichallofsmoothmanifoldstheoryrests

7、theinversefunctiontheorem

8、andsomeapplicationsofit:tosu

9、bmanifoldthe-viPrefaceory,embeddingsofsmoothmanifoldsintoEuclideanspaces,approximationofcontinuousmapsbysmoothones,andquotientsofmanifoldsbygroupactions.Thenextfourchapters,8through11,focusontensorsandtensor eldsonmanifolds,andprogressfromRiemannianmetricsthroughdi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签