资源描述:
《gtm218.introduction.to.smooth.manifolds.-.john.m..lee》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、INTRODUCTIONTOSMOOTHMANIFOLDSbyJohnM.LeeUniversityofWashingtonDepartmentofMathematicsJohnM.LeeIntroductiontoSmoothManifoldsVersion3.0December31,2000ivJohnM.LeeUniversityofWashingtonDepartmentofMathematicsSeattle,WA98195-4350USAlee@math.washington.eduhttp://www.math.washington.edu/~leec200
2、0byJohnM.LeePrefaceThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifolds,forstudentswhoalreadyhaveasolidacquaintancewithgeneraltopology,thefundamentalgroup,andcoveringspaces,aswellasbasicundergraduatelinearalgebraandrealanalysis.Itisanaturalsequeltomyearlierbookontopo
3、logicalmanifolds[Lee00].Thissubjectisoftencalleddierentialgeometry."Ihavemostlyavoidedthisterm,however,becauseitappliesmoreproperlytothestudyofsmoothmanifoldsendowedwithsomeextrastructure,suchasaRiemannianmet-ric,asymplecticstructure,aLiegroupstructure,orafoliation,andofthepropertiestha
4、tareinvariantundermapsthatpreservethestructure.Al-thoughIdotreatallofthesesubjectsinthisbook,theyaretreatedmoreasinterestingexamplestowhichtoapplythegeneraltheorythanasobjectsofstudyintheirownright.Astudentwhonishesthisbookshouldbewellpreparedtogoontostudyanyofthesespecializedsubjectsinm
5、uchgreaterdepth.Thebookisorganizedroughlyasfollows.Chapters1through4aremainlydenitions.Itisthebaneofthissubjectthattherearesomanydenitionsthatmustbepiledontopofoneanotherbeforeanythingin-terestingcanbesaid,muchlessproved.Ihavetried,nonetheless,tobringinsignicantapplicationsasearlyandas
6、oftenaspossible.TherstonecomesattheendofChapter4,whereIshowhowtogeneralizetheclassicaltheoryoflineintegralstomanifolds.Thenextthreechapters,5through7,presenttherstoffourmajorfoundationaltheoremsonwhichallofsmoothmanifoldstheoryrests
7、theinversefunctiontheorem
8、andsomeapplicationsofit:tosu
9、bmanifoldthe-viPrefaceory,embeddingsofsmoothmanifoldsintoEuclideanspaces,approximationofcontinuousmapsbysmoothones,andquotientsofmanifoldsbygroupactions.Thenextfourchapters,8through11,focusontensorsandtensoreldsonmanifolds,andprogressfromRiemannianmetricsthroughdi