固体溶液活度理论

固体溶液活度理论

ID:29964934

大小:7.48 MB

页数:37页

时间:2018-12-25

固体溶液活度理论_第1页
固体溶液活度理论_第2页
固体溶液活度理论_第3页
固体溶液活度理论_第4页
固体溶液活度理论_第5页
资源描述:

《固体溶液活度理论》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第四章固体溶液活度理论(Powell,1987;江培谟,1989;Mukhopadhyayetal.,1993;PowellandHolland,1993;Spear,1995;Will,1998)最紧邻规则、长程有序与短程有序、固溶体的理想活度、活度系数、正规溶液、Margules参数、零次近似模型、简单混合物模型、似化学模型、亚正规溶液、活度系数表达式、交互固溶体、Darken二阶表达式4.1概述固体溶液是地球化学和岩石学研究中非常重要的一个方面,固溶体模型也多种多样。从固溶体发生混合的晶格结点来说,既有元素在结点内的混合,也有元素在结点之间的混合;从固溶体中组分

2、的混合性质来说,既有理想混合,也有非理想混合;从固溶体组分的活度模型来说,既有理想活度模型,也有非理想活度模型;从溶液模型来说,既有正规溶液模型,也有亚正规溶液模型;此外,还有描述包括相变情况的活度模型。可以说,固溶体活度理论既简单,也复杂,并且是个尚未得到完满解决的问题。固体溶液(例如矿物)的成分是对它进行热力学分析的基础。由其成分,可得到矿物的某些热力学性质。但是,要使成分与矿物的热力学性质联系起来,还必须选取适当的模型。例如,化学势与成分的关系,理想溶液模型的化学势-矿物成分关系,就与非理想溶液的矿物化学势-成分关系就不同。因此,只有使用合适的模型,才能得到满意

3、的结果。4.1.1最紧邻规则为处理液态溶液,物理化学家创立了似晶格模型的溶液理论。这个模型是把液体看作分子都排列在一定的格子里,就象晶体那样。但是,液体毕竟不是晶体。因此,此模型就叫做“似晶格模型”。正因为此模型象晶体那样处理液体,37所以目前被广泛用来研究固体溶液。这个模型不考虑溶液中的库仑力,故只适用于非极性分子的混合物,不适用于高度极性分子的混合物。在处理过程中,只考虑一个分子与它最紧邻的Z(配位数)个分子(离子)的相互作用。我们知道,矿物固溶体中离子的相互替代会造成固溶体能量的变化,所以选取合适的固溶体模型描述这种能量变化是必要的。描述固体溶液中这种能量变化的

4、最简单的模型就是所谓的“最紧邻模型”(Nearestnearmodel)。这个模型最早由Ising(1925)所提出,因而也叫做Ising模型。Ising(1925)在描述矿物晶体内铁磁性与反铁磁性时,只考虑了最紧邻分布的原子之间的相互作用(Will,1998)。以完全有序的NaCl晶体为例。图中距离中心离子(centralatom)A为的是6个离子B,因而离子A是六次配位的(six-foldcoordinated)。A占据了八面体位置(octahedralsite)。距离A为的是次紧邻(second/nextnearestneighbours)12个离子A,距离A为

5、的是8个第三级最紧邻(thirdnearestneighbours)的离子B。在固体溶液模型中,仅考虑离子A和离它最紧邻的6个离子B之间的相互作用,距离A更远(即次紧邻、第三级最紧邻)的离子不再考虑。4.1.2长程有序与短程有序所谓“长程有序”(long-rangeorder),指在整个矿物晶体内,离子的分布呈现有序的分布。虽然不等效的结点上离子的分布不同,但是相同的结点上各种离子的分布却是有规律的。矿物的这种有规律可循的晶体化学特征,是固体溶液热力学性质的分析基础。“短程有序”(short-rangeorder)则指在特殊的“成对替代”(coupledsubstit

6、ution)情况下,矿物晶体内某些结点上离子分布的有序特点。短程有序在成对替代中很重要,也是固体溶液显示非理想混合性质的重要原因。短程有序往往是由于相互替代的离子大小、电荷不同引起的。一般来说,晶体结点内离子的替代是无序的,例如,Fe2+、Mg离子电荷相同、大小相近,它们之间的替代是无限的、无序的。但是,在某些矿物内,情况就不是这样了。例如斜长石固体溶液,K和Na可以无限制地相互替代,但是K、Na和Ca离子之间的替代就不是无限的。Na+(或K+)替代Ca2+则造成一个单位的正电荷不足,因此需要Si4+同时再取代一个Al3+,以平衡电荷。这样,实际发生的替代是NaSi=

7、CaAl或KSi=CaAl,这种成对替代叫做“Tschermak’ssubstitution”(契尔马克替代)。契尔马克替代引起斜长石内的短程有序现象。短程有序使得中心离子外围的最紧邻离子的选择性分布,即有些离子“偏好”这个位置(结点),而另一些离子则偏好其他位置。因而,随着PT变化,短程有序使得矿物固体溶液的有序程度发生变化,同时其混合的理想程度亦发生变化。例如,可使得矿物内易于形成A-A离子对和B-B离子对,而较难以形成A-B离子对。4.1.3分子型与离子型固体溶液及交互固溶体Bradley(1962)将固体溶液的混合模型分为“分子型”和“离子型

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。