欢迎来到天天文库
浏览记录
ID:29959580
大小:443.50 KB
页数:20页
时间:2018-12-25
《北京市房山区2013年中考数学二模试卷(解析版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北京市房山区2013年中考数学二模试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.(4分)(2012•呼和浩特)﹣2的倒数是( ) A.2B.﹣2C.D.考点:倒数.分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题. 2.(4分)(2013•房山区二模)国家统计局
2、22日公布的2012年统计公报显示,我国2012年全年研究与试验发展(RD)经费支出10240亿元,比上年增长17.9%,占国内生产总值的1.97%.将10240用科学记数法表示应为( ) A.1.0240×104B.1.0240×105C.10.240×104D.0.10240×104考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤
3、a
4、<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时
5、,n是负数.解答:解:将10240用科学记数法表示为1.0240×104.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤
6、a
7、<10,n为整数,表示时关键要正确确定a的值以及n的值. 3.(4分)(2006•宜宾)在直角坐标系中,点M(1,2)关于y轴对称的点的坐标为( ) A.(1,﹣2)B.(2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)考点:关于x轴、y轴对称的点的坐标..分析:根据平面直角坐标系的性题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.解答:解:点P
8、(m,n)关于y轴对称点的坐标P′(﹣m,n),∴点P(1,2)关于y轴对称的点的坐标为(﹣1,2)故选D.点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数. 4.(4分)(2013•房山区二模)如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为( ) A.πB.C.2πD.考点:扇形面积的计算..分析:根据三角形的内角和是180°和扇形的面积公式进行
9、计算.解答:解:∵∠A+∠B+∠C=180°,∴阴影部分的面积==π.故选B.点评:考查了扇形面积的计算,因为三个扇形的半径相等,所以不需知道各个扇形的圆心角的度数,只需知道三个圆心角的和即可. 5.(4分)(2013•房山区二模)某场射击比赛中,第一小组10人第一轮射击成绩分别为8、9、9、10、7、8、8、9、8、8(单位:环),则这组数据的众数和中位数分别为( ) A.8、8B.8、9C.7、8D.9、8考点:众数;中位数..分析:根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.解答:解:将
10、数据从小到大排列为:7,8,8,8,8,8,9,9,9,10,众数为:8;中位数为:8.故选A.点评:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列. 6.(4分)(2013•房山区二模)已知两个圆的半径分别是5和3,圆心距是2,则这两个圆的位置关系是( ) A.内切B.相交C.外切D.外离考点:圆与圆的位置关系..分析:根据圆心距与半径之间的数量关系可知两圆的位置关系是内切.解答:解:∵两个圆的半径分别是5和3,圆心距是2,5﹣3=2,∴两圆的位置关系是内切.故选A.点评
11、:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P,则外离:P>R+r;外切:P=R+r;相交:R﹣r<P<R+r;内切:P=R﹣r;内含:P<R﹣r. 7.(4分)(2013•房山区二模)若一个多边形的内角和等于720°,则这个多边形的边数是( ) A.5B.6C.7D.8考点:多边形内角与外角..专题:压轴题.分析:利用多边形的内角和公式即可求解.解答:解:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=720°,解得n=6,所以这个多边形的边数是6.故选B.点
12、评:本题考查了多边形的内角和公式及利用内角和公式列方程解决相关问题.内角和公式可能部分学生会忘记,但是这并不是重点,如果我们在学习这个知识的时候能真正理解,在考试时即使忘记了公式,推导一下这个公式也不会花多少时间,所以,
此文档下载收益归作者所有