资源描述:
《七年级数学上册 2.3 绝对值与相反数教案 (新版)青岛版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3绝对值与相反数主要内容:有理数的绝对值概念及表示方法,有理数绝对值的求法和有关的简单计算,在绝对值概念形成过程中,渗透数形结合等思想方法.教学过程:1.情境引入一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.若每千米耗油10升,则向东行3千米,耗油量是______,向西行2千米,耗油量是______.2.新授假设把汽车行的路想像成数轴,将车站定为原点,向东行驶3千米到达A点,向西行驶2千米到达B点.数轴上点A与原点的距离是____个单位长度,点B与原点的距离是_____个单位长度.BA–3–2–1012
2、3定义:叫做这个数的绝对值.绝对值的符号:“”注意:1.任何有理数的绝对值都是数2.绝对值最小的数是3.例题分析例1:在数轴上画出表示下列各数的点:,并写出它们的绝对值.例2:求下列各组数的绝对值,并分别比较它们绝对值的大小:(1)-3.5与4(2)-3与-6例3:某厂生产闹钟,检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.12345+2s-3.5s6s+7s-4s误差不超过5秒的为合格品,否则为次品,问有几台合格?巩固练习:1.填空:
3、-3
4、=,
5、
6、=,
7、-0.4
8、=,
9、0
10、=__,
11、9
12、=__,
13、-2
14、=.2.用“<”把
15、-3
16、、
17、-0.4
18、及
19、-
20、2
21、连接起来.3.填空:(1)绝对值小于3的所有整数是________________,非正整数是____(2)若
22、x
23、=6,则x=(3)在数轴上A表示-,点B表示,则点离原点的距离近些4.计算:(1)
24、—3
25、×
26、—6.2
27、(2)
28、—5
29、+
30、—2.49
31、(3)—
32、—
33、(4)
34、—
35、÷
36、
37、5,某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:12345678+0.3-0.2-0.3+0.40-0.1-0.5+0.3指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?★,求的值.2.3绝对值与相反数(第2课时)主
38、要内容:有理数的相反数概念及表示方法,有理数相反数的求法和有关的简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括能力.教学过程:1.引课:数轴上到原点的距离是3的点有几个?在数轴上到原点的距离是2.5的点有几个?它们到原点的距离各是多少?它们之间还有什么关系?2.新授观察下列各对有理数,你发现了什么?请与同学们交流5与-5-2.5与2.5定义:像5与-5、-2.5与2.5…这样、的两个数,叫做互为相反数,其中一个是另一个的________(只有符号不同的两个数).规定:零的相反数是零注:正数的相反数是__________;负数的相反数是___________;0的相反数是_
39、________.例1求出3、-4.5、0、的相反数(在一个数的前面添一个“-”,就表示这个数的相反数)例2化简:.例3求6、-6、0、、的绝对值,有什么发现?归纳:相反数的性质:______________________________________________________________________________________________________________________________思考:一个数的绝对值与这个数本身或它的相反数有什么关系?一个正数的绝对值是______一个负数的绝对值是______0的绝对值是______自我小结:巩固练习1.P2
40、3练一练1.填空:+(+123)=_______,-(-0.5)=_______,-(+24)=_______,-[-(-3.2)]=_______.2.判断:(1)若一个数的绝对值是2 ,则这个数是2 ()(2)
41、5
42、=
43、-5
44、() (3)若a=b,则
45、a
46、=
47、b
48、()(4)若
49、a
50、=
51、b
52、,则a=b ()(5)若
53、a
54、=-a,则a<0()3.拓展(1)绝对值不小于3的整数是什么?绝对值小于5的整数是什么?绝对值小于3的整数是否都小于绝对值小于5的整数?(2)已知x是整数,且2.5<
55、x
56、<7,求x.(3)已知点A,B分别为数轴上表示互为相反数的两个点,且A,B两点间的距离为5,其中A在
57、B的左边,请你写出这两个点所表示的数.2.3绝对值与相反数(第3课时)主要内容:有理数的绝对值相反数概念及表示方法,有理数的大小比较,在相反数概念形成过程中,进一步理解数形结合等思想方法,注意养成概括能力www-2-1-cnjy-com教学过程:一、回顾复习1、什么叫绝对值?2、什么叫相反数?3、一个数的绝对值与这个数的本身或它的相反数有什么关系?4、填空:(1)+
58、-2
59、=________(2)-
60、+4
61、