欢迎来到天天文库
浏览记录
ID:29886386
大小:65.56 KB
页数:3页
时间:2018-12-24
《高中数学 1.6 三角函数模型的简单应用学案 新人教a版必修4(2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十四课时1.6三角函数模型的简单应用【学习目标】体会三角函数是描述周期变化现象的重要的数学模型;学会将简单的实际问题抽象为与三角函数有关的简单函数模型,从而利用三角函数的相关知识解决问题【课前导学】1.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,通过分析它的变化趋势确定它的周期,从而建立起适当的三角函数模型.解决问题的一般程序是:(1)审题:先审清楚题目条件、要求,理解数学关系;(2)建模:分析题目条件(如周期性等),选择适当三角函数模型;(3)求解:对所建立的三角函数模型进行分析研究,得到数学结论;(4)还原:把数学结论
2、还原为实际问题的解答.2.解决有关三角函数的实际问题时,要注意:自变量x的变化范围;数形结合,通过观察图形,获得本质认识;要认真仔细地审题,多进行联想、运用适当的数学模型;涉及复杂的数据,往往需要借助使用信息技术工具.3.通常用函数y=Asin(ωx+φ)+b来刻画现实生活中重复出现的现象.例1.某港口相邻两次高潮发生的时间间隔12h20min,低潮时入口处水的深度为2.8m,高潮时为8.4m,一次高潮发生在10月3日2∶00.(1)若从10月3日0∶00开始计算时间,选用一个三角函数来近似描述这个港口的水深d(m)和时间t(h)之间的函
3、数关系;(2)求出10月5日4∶00水的深度例2已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作:y=f(t),下表是某日各时的浪高数据:经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.(1)根据以上数据,求函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8∶00时至晚上20∶00时之间,有多少时间可供冲浪者进行运动?课后反思
此文档下载收益归作者所有