高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4

高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4

ID:29144257

大小:286.50 KB

页数:8页

时间:2018-12-17

高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4_第1页
高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4_第2页
高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4_第3页
高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4_第4页
高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4_第5页
资源描述:

《高中数学 1.6三角函数模型的简单应用学案2 新人教a版必修4》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§1.6三角函数模型的简单应用自主学习1.三角函数的周期性y=Asin(ωx+φ)(ω≠0)的周期是T=________;y=Acos(ωx+φ)(ω≠0)的周期是T=________;y=Atan(ωx+φ)(ω≠0)的周期是T=________.2.函数y=Asin(ωx+φ)+k(A>0,ω>0)的性质(1)ymax=________,ymin=________.(2)A=__________,k=__________.(3)ω可由__________确定,其中周期T可观察图象获得.(4)由ωx1+φ=______,ωx2+φ=__________,ωx3+φ=__

2、________,ωx4+φ=__________,ωx5+φ=________中的一个确定φ的值.3.三角函数模型的应用三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.结合三角函数图象的特点,思考后写出下列函数的周期.(1)y=

3、sinx

4、的周期是________;(2)y=

5、cosx

6、的周期是________;(3)y=

7、tanx

8、的周期是________;(4)y=

9、Asin(ωx+φ)

10、(Aω≠0)的周期是________;(5)y=

11、Asin(ωx+φ)+k

12、(Aωk

13、≠0)的周期是__________;(6)y=

14、Atan(ωx+φ)

15、(Aω≠0)的周期是__________.对点讲练从实际问题中提炼三角函数模型例1 (1)如图(1)所示为一个观览车示意图,该观览车半径为4.8m,圆上最低点与地面距离为0.8m,60秒转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面距离为h.(1)求h与θ间关系的函数解析式;(2)设从OA开始转动,经过t秒到达OB,求h与t间关系的函数解析式.回顾归纳 如果实际问题中,某种变化着的现象具有一定的周期性,那么它就可以借助三角函数来描述,从而构建三角函数模型.变式训练1 如图

16、所示,一个摩天轮半径为10m,轮子的底部在地面上2m处,如果此摩天轮按逆时针转动,每30s转一圈,且当摩天轮上某人经过点P处(点P与摩天轮中心高度相同)时开始计时.(1)求此人相对于地面的高度关于时间的关系式;(2)在摩天轮转动的一圈内,约有多长时间此人相对于地面的高度不小于17m.三角函数模型在物理学科中的应用例2 交流电的电压E(单位:伏)与时间t(单位:秒)的关系可用E=220sin来表示,求:(1)开始时的电压;(2)最大电压值重复出现一次的时间间隔;(3)电压的最大值和第一次取得最大值的时间.回顾归纳 三角函数模型在物理学科中有着广泛的应用.在应用三角函数知识解

17、决物理问题时,应当注意从复杂的物理背景中提炼基本的数学关系,还要调动相关物理知识来帮助理解问题.变式训练2 如图表示电流I与时间t的函数关系式:I=Asin(ωt+φ)在同一周期内的图象.(1)据图象写出I=Asin(ωt+φ)的解析式;(2)为使I=Asin(ωt+φ)中t在任意一段的时间内电流I能同时取得最大值和最小值,那么正整数ω的最小值是多少?三角函数模型在实际问题中的应用例3 某港口水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是水深数据:t(小时)03691215182124y(米)10.013.09.97.010.013.010.17.010.

18、0据上述数据描成的曲线如图所示,经拟合,该曲线可近似的看成正弦函数型y=Asinωt+B的图象.(1)试根据数据表和曲线,求出y=Asinωt+B的解析式;(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)回顾归纳 确定函数关系式y=Asinωt+B,就是确定其中的参数A,ω,B等,可从所给的数据中寻找答案.由于函数的最大值与最小值不是互为相反数,若设最大值为M,最小值为m,则A=,B=.变式训

19、练3 设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:t03691215182124y1215.112.19.111.914.911.98.912.1经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是(  )A.y=12+3sint,t∈[0,24]B.y=12+3sin,t∈[0,24]C.y=12+3sint,t∈[0,24]D.y=12+3s

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。