欢迎来到天天文库
浏览记录
ID:29884625
大小:145.56 KB
页数:3页
时间:2018-12-24
《高中数学 1.2应用举例导学案新人教a版必修5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.2应用举例【学习目标】1.在平面图形中构造恰当的三角形,能正确选择正弦定理或余弦定理加以解答.2.体会正弦定理和余弦定理在平面几何的计算与推理中的作用.【重点难点】1.重点:运用正弦定理和余弦定理处理三角形中的计算问题.2.难点:正确挖掘图形中的几何条件简化计算.【学习过程】一、自主学习:正弦定理:.正弦定理的性质:.余弦定理:.余弦定理的推论:.三角形面积公式:.二、合作探究归纳展示如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=.求A、B两点的距离(精确到0.1m).提问1:ABC中
2、,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.三、讨论交流点拨提升新知1:基线在测量上,根据测量需要适当确定的叫基线.例.如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一
3、边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离.变式:河岸选取相距40米的C、D两点,测得BCA=60°,ACD=30°,CDB=45°,BDA=60°.练:两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?四、学能展示课堂闯关PAC1.水平地面上有一个球,现用如下方法测量球的大小,用锐角的等腰直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=5cm,则球的半径等于().A.5cmB.C.D.6cm2.台风中心从A地以每
4、小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为().A.0.5小时 B.1小时 C.1.5小时 D.2小时3.在中,已知,则的形状().A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在中,已知,,,则的值是.5.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为km.五、学后反思1.解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件
5、与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.【课后作业】1.隔河可以看到两个目标,但不能到达,在岸边选取相距km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.2.某船在海面A处测得灯塔C与A相距海里,且在北偏东方向;测得灯塔B与A
6、相距海里,且在北偏西方向.船由向正北方向航行到D处,测得灯塔B在南偏西方向.这时灯塔C与D相距多少海里?
此文档下载收益归作者所有