资源描述:
《高中数学 1.1.1集合的含义与表示教学设计 新人教a版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.1.1 集合的含义与表示教学设计(师)三维目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。(2)了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识。教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程: 一、创设情境,新课引入 (1)请第一组的全体同学站起来? 在这里,集合是
2、我们常用的一个词语,我们感兴趣的是问题中某些特定(是第一组的同学)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。二、师生互动,新课讲解1、集合的有关概念集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。课本P2:例子(1)—(8),都构成一个集合。2、集合的表示方法:(1)集合通常用大写的拉丁字母表示,如A,B,C,P,Q,X,Y,等;集合的元素通常用小写的
3、拉丁字母表示,如a,b,c,等。(2)如果a是集合A的元素,就说a属于集合A,记作aA;如果a不是集合A的元素,就说a不属于A,记作aA(或aA)。3、常用的数集及其记法:全体非负整数的集合通常简称非负整数集(或自然数集),记作:N;(注意:0是自然数)所有正整数组成的集合称为正整数集,记作:N+或N*。全体整数的集合通常简称整数集,记作:Z;全体有理数的集合通常简称有理数集,记作:Q;全体实数的集合通常简称实数集,记作:R。学生练习:用符号或填空:1N,0N,-3N,0.5N,N1Z,0Z,-3Z,0.5Z,Z,1Q,0Q,-3Q,0.5Q,Q,1R,0R,-3R,0.5R
4、,R.4、集合的表示方法:先介绍记号:大括号“{}”,在集合里表示总体,而后提出集合的两种表示方法:(1)列举法:把集合中的元素一一列举出来,写出大括内表示集合的方法。例如:“地球上的四大洋”组成的集合可以表示为{太平洋,大西洋,印度洋,北冰洋}。(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。一般先在大括号内写上这个集合的元素的一般形式,再划一条竖线,在竖线右面写上这个集合的元素的公共属性。例如:所有的奇数表示为:{x
5、x=2k+1,kZ}5、集合的性质:(1)确定性:集合中的元素,必须是确定的,不是含糊不清的,任何一个对象,都能明确判断它是或者
6、不是某全集合的元素,二者必居其一。(2)互异性:集合中任何两个元素都是不相同的,在同一个集合中,相同的对象只能算作一个元素。例如:集合{1,1,2}只能当作只有两个元素的集合。应用写为{1,2}才为正确的。(3)无序性:在用列举法表示一个集合,写出它的各个元素时,与排列先后的顺序没有关系。例如,对于集合:{-1,1,2},也可以写成{1,2,-1}或{1,-1,2}等。但是对于一些列举法中用省略号“……”表示的集合,仍应按它的一定次序排列,(根据它的特征)不能任意书写。例如,对于自然数集,应写成:{1,2,3,……},而不能写成:{3,2,1,……};对于正偶数集,应写成:
7、{2,4,6,……},不能写成:{4,2,6,……},但对于数集:{1,2,3,4,5},则可表成:{3,1,5,2,4}。6、例题讲解:例1:下列所给对象不能构成集合的是________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生;(5)1,2,3,1.解析 (1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16
8、岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.(5)虽然(5)中的对象具备确定性,但有两个元素1相同,不符合元素的互异性,所以(5)不能组成集合.答案 (1)(3)(5)点评 判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式训练1:(1)(课本P3的思考题)判断以下元素的全体是否组成集合,并说明理由:1)大于3小于11的偶数